University of Amsterdam

?\\ Human-Computer Studies (HCS, formerly

; " SWI)
. I Kruislaan 419, 1098 VA Amsterdam
The Netherlands
pr l g Tel. (+31) 20 5256121

SWI-Prolog 5.6

Reference Manual
Updated for version 5.6.59, August 2008

Jan Wielemaker
wielemak@science.uva.nl
http://www.swi-prolog.org

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed as an open Prolog environment, providing
a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright (© 1990-2008, University of Amsterdam

Contents

1 Introduction 10
1.1 SWI-Prolog e e e e e 10
1.1.1 BooksaboutProlog 10

1.2 Status e e e e e e e e e e 11
1.3 Compliance to the ISO standard 11
1.4 Should you be using SWI-Prolog? 11
1.5 The XPCE GUI system for Prolog 12
1.6 Release Notes e e e 13
1.6.1 Version 1.8 Release Notes 13

1.6.2 Version 1.9Release Notes 14

1.6.3 Version2.0Release Notes 14

1.6.4 Version2.5Release Notes 14

1.6.5 Version2.6Release Notes 15

1.6.6 Version2.7Release Notes 15

1.6.7 Version2.8 Release Notes 15

1.6.8 Version29Release Notes 16

1.6.9 Version3.0Release Notes 16
1.6.10 Version 3.1 Release Notes 16
1.6.11 Version3.3Release Notes 16
1.6.12 Version3.4 Release Notes 17
1.6.13 Version4.0Release Notes 18
1.6.14 Version5.0Release Notes 18
1.6.15 Version5.1 Release Notes 18
1.6.16 Version5.2Release Notes 18
1.6.17 Version5.3Release Notes 19
1.6.18 Version5.4 Release Notes 19
1.6.19 Version5.5Release Notes 19
1.6.20 Version 5.6 Release Notes 19

1.7 Donate to the SWI-Prolog project 19
1.8 Acknowledgements 19
2 Overview 21
2.1 Getting started quickly 21
2.1.1 Starting SWI-Prolog 21

2.1.2 Executing a qUeTY v v v v i e e e e e e e e e e e e e e 22

2.2 Theuser’sinitialisationfile 22
2.3 Initialisation filesand goals Lo 23
2.4 Command-line options e e e e e e 23
2.5 GNUEmacslInterface e 26
2.6 OnlineHelp e 27

SWI-Prolog 5.6 Reference Manual

Contents 3

2.7 Command-line history e 28
2.8 Reuseof top-level bindings o 28
2.9 Overview of the Debugger o 29
2.10 Compilation oL e e e 32
2.10.1 During program development 32
2.10.2 Forrunningtheresult. 32

2.11 Environment Control (Prolog flags) 35
2.12 Anoverview of hook predicates, 43
2.13 Automatic loading of libraries Lo o oo 45
2.14 Garbage Collection e 46
2.15 Syntax NOtES o v o e e e e e e e 46
2.15.1 ISO Syntax Support e e e e 46

2.16 Infinite trees (cyclicterms) 50
2.17 Wide character support e e e e e e 50
2.17.1 Wide character encodings on streams 50

2.18 System limits oL e e e e 52
2.18.1 Limits on MEMOry areas v v v v v v v v v bt e 52
2.18.2 Other Limits o . o e e e 52
2.183 Reserved Names e 54

2.19 SWI-Prolog and 64-bit machines, 54
2.19.1 Supported platforms 54
2.19.2 Comparing 32- and 64-bits Prolog 55
2.19.3 Choosing between 32- and 64-bits Prolog 55

3 [Initialising and Managing a Prolog Project 57
3.1 The project source-files 57
3.1.1 File Names and Locations 57

3.1.2 ProjectSpecial Files, 58

3.1.3 International source fileso Lo 59

32 Usingmodules e 59
3.3 Thetest-edit-reloadcycle 60
3.3.1 Locating thingstoedit 60

3.3.2 Editing and incremental compilation 0L 61

3.4 Using the PceEmacs built-ineditor 61
34.1 ActivatingPceEmacs 61

3.4.2 Bluffing through PceEmacs 61

343 PrologMode 63

3.5 The Graphical Debugger 66
3.5.1 Invoking the window-based debugger 66

3.6 The Prolog Navigator i e 66
37 Crossreferencer oo e e e e e e e 67
3.8 Accessing the IDE from your program 69
39 SummaryoftheiDE 69

SWI-Prolog 5.6 Reference Manual

4 Built-in predicates 71
4.1 Notation of Predicate Descriptions 71
4.2 Character representation ot . e e e e e e e e e e e e 71
4.3 Loading Prologsourcefiles L 72

4.3.1 Conditional compilation and program transformation 78
4.3.2 Loading files, active code and threads 81
433 Quickloadfileso 82
4.4 Listing and Editor Interface o oo 82
45 Verify TypeofaTerm e 84
4.6 Comparison and Unificationof Terms 86
4.6.1 Standard Orderof Terms 86
4.6.2 Special unification and comparison predicates 87
4.7 Control Predicates e 88
4.8 Meta-Call Predicates e 90
4.9 1ISO compliant Exception handling 93
4.9.1 Debugging and eXceptions e e e e e 93
4.9.2 Theexceptionterm v vt it vt 94
4.9.3 Printing MmeSSages vt e e e e e e e e e e e e 94
4.10 Handling signals L 96
4.10.1 Notesonsignalhandling 98
4.11 The ‘block’ control-structure L e 98
4.12 DCG Grammarrules o e e e e e 99
413 Database e e e e e e e 100
4.13.1 Update view L e e e e 102
4.13.2 Indexing databases e 102
4.14 Declaring predicates properties e e e e e 103
4.15 Examining the program e e e 104
4.16 Inputandoutput L e e e 107
4.16.1 ISO Input and Output Streams v v v v v v v e .. 108
4.16.2 Edinburgh-styleI/O.o 113
4.16.3 Switching Between Edinburgh and ISOI/O 115
4.16.4 Write onto atoms, code-lists, etc.o 116
4.17 Statusof streams e e e 116
4.18 Primitive character /O L 118
4.19 Termreading and writing L L e 121
4.20 Analysing and Constructing Terms oo 126
4.20.1 Non-logical operations onterms« o oo v v v e 128
4.21 Analysing and Constructing Atoms e . 129
4.22 Character properties« v v vt i e e e e e e e e e e 131
4.22.1 CaseCONVEISION . . . v v v v v v vt e e e e e e e e e e e e 133
4.22.2 White space normalization Lo oL 133
4.22.3 Language specific comparisono e e 133
4.23 Representing text in Strings oL it e e e e e e 134
424 OPerators . . v v v v v e 135
4.25 Character CONVETSION v v v v v et e e e e e e e e e e e e 136
426 Arithmetic e e e e 137
4.26.1 Special purpose integer arithmetic 137

SWI-Prolog 5.6 Reference Manual

Contents 5
4.26.2 General purpose arithmetic 137

4.27 Adding Arithmetic Functions L L oo 144
4.28 Built-in listoperations e e e e 145
4.29 Finding all SolutionstoaGoal 146
4.30 Invoking Predicates on all Members of aList 147
431 Forall e 148
432 Formatted Write o e e e 148
4321 Writef . . . o oL e e 148
4322 Format e e e 150
4.32.3 Programming Format, 152

4.33 Terminal Control e 152
4.34 Operating System Interaction L o 153
4.34.1 Dealing withtimeanddate 156
4.34.2 Controlling the PLWIN.EXE console window 160

4.35 File System Interaction L e e 161
4.36 User Top-level Manipulation 164
4.37 Creating a Protocol of the User Interaction 165
4.38 Debugging and Tracing Programs 166
4.39 Obtaining Runtime Statistics 168
4.40 Executionprofiling 168
4.40.1 Profiling predicates e 170
4.40.2 Visualizing profilingdatao 170
4.40.3 Information gathering 171

441 Memory Management i it e e e e e e e e e e e e e 172
442 Windows DDE interface 173
4.42.1 DDEclientinterface oL 173
4422 DDEservermodeo 174

443 Miscellaneous e e e e e e e 175
S Using Modules 177
5.1 Why Using Modules? e 177
5.2 Name-based versus Predicate-based Modules 177
5.3 DefiningaModule e 178
5.4 Importing Predicates intoaModule 178
54.1 ReservedModules 179

5.5 Composing modules fromothermodules 180
5.6 Usingthe Module System 180
5.6.1 Object Oriented Programming 181

5.7 Meta-Predicatesin Modules Lo L 182
5.7.1 Definition and Context Module 182

5.7.2 Overruling Module Boundaries 183

5.8 DynamicModules e 183
5.9 Module Handling Predicates 183
5.10 Compatibility of the Module System 185
5.10.1 Emulating meta_predicate0 186

SWI-Prolog 5.6 Reference Manual

6 Special Variables and Coroutining

6.1

6.2
6.3

Attributed variables Lo
6.1.1 Special purpose predicates for attributes
Coroutining v v v e e e e e e e e e e e e
Global variables
6.3.1 Compatibility of SWI-Prolog Global Variables

7 CHR: Constraint Handling Rules

7.1
7.2

7.3

7.4

7.5
7.6

7.7
7.8

Introduction e e
Syntax and Semantics oL oL L e e e e
T2.1 Syntax e e e e
722 Semanticso i e e e e e e e e e e e e e e e
CHR in SWI-Prolog Programs
7.3.1 Embedding in Prolog Programs
7.3.2 Constraint declaration oL oL
733 Compilation e
Debugging e e
TAT Ports e e e
742 Tracing o o e e e
7.4.3 CHR Debugging Predicates
Examples e e
Backwards Compatibility
7.6.1 The OId SICStus CHR implemenation
7.6.2 The Old ECLiPSe CHR implemenation
Programming Tips and Tricks
Compiler Errors and Warnings L Lo
7.8.1 CHR Compiler Errors,

8 Multi-threaded applications

8.1
8.2
8.3

8.4
8.5

8.6
8.7

8.8

Creating and destroying Prologthreads
Monitoring threads L. e
Thread communication L e e
8.3.1 Message qUEUESt e e e e e e e e e
8.3.2 Signalling threads
8.3.3 Threads and dynamic predicateso
Thread synchronisation L e
Thread-support library(threadutil)
8.5.1 Debuggingthreads o
8.5.2 Profilingthreads
Unbounded thread creation e
Multi-threaded mixed C and Prolog applications
8.7.1 A Prolog thread for each native thread (one-to-one)
8.7.2 Pooling Prolog engines (many-to-many)
Multithreading and the XPCE graphics system

188
188
190
190
192
193

194
194
194
194
196
197
197
198
201
201
201
202
203
204
205
205
206
206
207
207

SWI-Prolog 5.6 Reference Manual

Contents 7
9 Foreign Language Interface 224
9.1 Overview of the Interface 224
9.2 Linking Foreign Modules 224
9.2.1 What linking is provided? oL 225

9.2.2 What kind of loading should I beusing? 225

9.3 Dynamic Linking of shared libraries 225
9.4 Using the library shlib for .DLL and .sofiles. 226
9.4.1 StaticLinking e 227

9.5 Interface Datatypes o i i e e e e e e 228
9.5.1 Type term_t: areference toaPrologterm 228

9.5.2 Other foreign interface types L 230

9.6 The ForeignInclude File 231
9.6.1 ArgumentPassingand Control 231

9.6.2 Atomsandfunctors 232

9.6.3 Analysing Terms via the Foreign Interface 234

9.64 ConstructingTerms Lo e 241

9.6.5 Unifyingdata e 244

9.6.6 BLOBS: Using atoms to store arbitrary binary data 249

9.6.7 Exchanging GMPnumbers 0. 251

9.6.8 Calling PrologfromC 253

9.6.9 DiscardingData 255
9.6.10 Foreign CodeandModules 256
9.6.11 Prolog exceptions in foreigncode, 257
9.6.12 Catching Signals (Software Interrupts) 259
9.6.13 Miscellaneouso 260
9.6.14 Errors and warningso a e e e e e e 262
9.6.15 Environment Control from Foreign Code 262
9.6.16 QueryingProlog 262
9.6.17 Registering Foreign Predicates 262
9.6.18 Foreign Code Hooks 266
9.6.19 Storing foreigndata. L L 267
9.6.20 Embedding SWI-Prolog in other applications 270

9.7 Linking embedded applicationsusingplld 273
9.7.1 Asimpleexample 275

9.8 The Prolog ‘home’ directory 277
9.9 Example of Using the Foreign Interface 277
9.10 Notes on Using ForeignCode 280
9.10.1 Memory Allocation e 280
9.10.2 Compatibility between Prolog versions 280
9.10.3 Debugging and profiling foreign code (valgrind) 280
9.10.4 Name ConflictsinCmodules 281
9.10.5 Compatibility of the Foreign Interface 281

SWI-Prolog 5.6 Reference Manual

10 Generating Runtime Applications 282
10.1 Limitations of gsave_program v v i i 284
10.2 Runtimes and Foreign Code 284
10.3 UsSing program reSOUICES . . . « v v v e v v v v e v e e e e et e e e e e e e 285

10.3.1 Predicates Definitionso 286
1032 The plrCc program o v v v v vttt e e e e 287
10.4 Finding Application files L o o 287
10.4.1 Passing a path to the application 288
10.5 The Runtime Environment 288
10.5.1 The Runtime Emulator, 288

A The SWI-Prolog library 290
A.1 aggregate.pl — Aggregation operators on backtrackable predicates 290
A.2 apply.pl — Apply predicatesonalist L. 293
A3 assoc: Association listso 293
A4 Dbroadcast: Broadcast and receive event notifications 294
A5 check: Elementary completenesschecks 0oL, 296
A.6 clp/clp_distinct: Weak arc consistent ‘all_distinct’ constraint 297

A6.1 Examplel e 298
A62 Example2 298
A.6.3 Example3 e e 298
A.7 clpfd.pl — Constraint Logic Programming over Finite Domains 299
A.8 clpgr: Constraint Logic Programming over Rationals and Reals 307
A.8.1 Solverpredicates e e 307
A.8.2 Syntax of the predicate arguments 308
A.8.3 Useofunification L 310
A.8.4 Non-linear constraints e 310
A.9 debug: Some reusable code to help debugging applications 310
A.10 gensym: Generate unique identifiers Lo 311
A.11 1ists: List Manipulation 312
A.11.1 SetManipulation e 313
A.12 nbset: Non-backtrackableset 314
A.13 www_browser: Activating your Web-browsero 315
A.14 option.pl —Option list processing v v v v v vt e 315
A.15 ordsets: Ordered Set Manipulation 317
A.16 pairs.pl — Operations on key-value lists 318
Al7 pio:Pure /O o . o e 319
A.17.1 pure_input.pl — Pure Input fromfiles 319
A.18 prologxref: Cross-reference data collection library 320
A.18.1 Extending thelibrary oL 321
A.19 readutil: Reading lines, streams and files 321
A.20 record: Access named fieldsinaterm oL 322
A.21 registry: Manipulating the Windows registry 324
A.22 simplex: Solve linear programming problems 325
A22.1 Example 1 e e 326
A222 Example2 e e 327
A223 Example3 e e e e e e 328

SWI-Prolog 5.6 Reference Manual

Contents 9

A.23 thread_pool.pl — Resource bounded thread management 329
A.24 ugraphs: Unweighted Graphs, 330
A.25 url.pl — Analysing and constructing URL oL, 333
B Hackers corner 336
B.1 Examining the Environment Stack 336
B.2 Interceptingthe Tracer e 338
B.3 Adding context to errors: prolog_exception_hook 339
B.4 Hooks using the exception predicate 340
B.5 Hooks for integrating librarieso 340
B.6 Hooks forloading files 341
B.7 ReadlineInteraction 342
C Compatibility with other Prolog dialects 343
C.1 Some considerations for writing portablecode 344
D Glossary of Terms 347
E SWI-Prolog License Conditions and Tools 353
E.1 The SWI-Prolog kernel and foreign libraries 353
E.1.1 The SWI-Prolog Prolog libraries 353

E.2 Contributing to the SWI-Prolog project 354
E.3 Software support to keep track of license conditions 354
E.4 Library predicates e e e 356
E4.1 aggregate e e 356
EA42 apply . . o e e e e e 356
E43 assoc e e e 356
E4.4 Dbroadcast i e e e 356
E45 check e e e e 357
E4.6 11Sts . . o i i e e e e e e 357
E47 option e e 357
EA4.8 ordsets. e e 357
E4.9 prologxref e e 358
E4.10 pairs i e e e e e 358
E4.1l pio o e e e e 358
E4.12 readutil o . e e e e 358
E4.13 record e 359
E4.14 registry . . . o o i i i i e e e e e e e 359
E4.15 ugraphs e e e e e e e 359
E4.16 url e e e e 359
EA4.17 www browsSer 0 i e e e e e e e e e e e e 360
E4.18 clp/clp.distinct @ i i i it e e e e 360
E4.19 clp/clpfd e e e 360
E4.20 clpdr . . .o . o e e e e e e 361
E421 clp/simplex . . . o i v i e e e e e e e e e 361
E4.22 thread pool i i e e e e 361

SWI-Prolog 5.6 Reference Manual

Introduction

1.1 SWI-Prolog

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. Those days Prolog
systems were very aware of its environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a very simple Prolog virtual machine called ZIP [,

] which defines only 7 instructions. Prolog can easily be compiled into this language
and the abstract machine code is easily decompiled back into Prolog. As it is also possible to wire a
standard 4-port debugger in the virtual machine there is no need for a distinction between compiled
and interpreted code. Besides simplifying the design of the Prolog system itself this approach has
advantages for program development: the compiler is simple and fast, the user does not have to
decide in advance whether debugging is required and the system only runs slightly slower when in
debug mode. The price we have to pay is some performance degradation (taking out the debugger
from the VM interpreter improves performance by about 20%) and somewhat additional memory
usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [] to improve
performance. While extending this set care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (; /2, | /2),
if-then (—>/2) and negation-by-failure (\+/1).

1.1.1 Books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-

gram in Prolog. These subjects have been described extensively in the literature. See [1,
[], and []. For more advanced Prolog material see
[]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those described in [1. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog' [] and
BIM Prolog? [1.

ISO compliant predicates are based on “Prolog: The Standard”, [], validated
using [].

'Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 5.6 Reference Manual

1.2. STATUS 11

1.2 Status

This manual describes version 5.6 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing, complex interactive systems, web-server and web-
server components. Although in our experience rather obvious and critical bugs can remain unnoticed
for a remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[I

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor /3 for example). Some predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

o SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

o Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

o You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

e Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (see make/0).

SWI-Prolog 5.6 Reference Manual

12 CHAPTER 1. INTRODUCTION

o Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always 1/O
bound.

o Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

o Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

o Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 9). It can also be embedded embedded in external
programs (see section 9.7). System predicates can be redefined locally to provide compatibility
with other Prolog systems.

o [ntegration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE []. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11, Win32 (Windows
95/98/ME and NT/2000/XP) and MacOS X (darwin).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:— pce_begin_class (prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :—>
"As the C++ constructor"::
send_super (Self, initialise, ’'Prolog Lister’),

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 13

send (Self, append, new (D, dialogqg)),
send (D, append,

text_item(predicate, message(Self, 1list, @argl))),
send (new (view), below, D).

list (Self, From:name) :-—>
"List predicates from specification"::
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),
current_output (01d),
pce_open(V, write, Fd),
set_output (Fd),
listing(Term),
close (Fd),
set_output (01d)
; send (Self, report, error, ’'Syntax error’)

:— pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unix/" platforms, Windows 95/98/ME, Windows NT/2000/XP
and MacOS X (using X11). In the past, versions for Quintus- and SICStus Prolog as well as some
Lisp dialects have existed. After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has been stopped due to lack
of standardisation in the Prolog community. If adequate standards emerge we are happy to actively
support other Prolog implementations.

Info. further information is available fromhttp://www.swi-prolog.org/packages/xpce/
or by E-mail to info@www.swi-prolog.org.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the file ChangeLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

SWI-Prolog 5.6 Reference Manual

14 CHAPTER 1. INTRODUCTION

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

e Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :- redefine_system_predicate/1 directive.top-
level

o ‘Answer’ reuse
The top-level maintains a table of bindings returned by top-level goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section 2.8.

e Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

o 32-bit Virtual Machine
Removes various limits and improves performance.

o [nline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such as var/1, etc.

e Various compatibility improvements

o Stream based 1/0 library
All SWI-Prolog’s I/0 is now handled by the stream-package defined in the foreign include
file SWI-Stream.h. Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the +term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.
Apart from various bug fixes listed in the ChangeLog file, these are the main changes since 2.1.0:

e [SO compatibility
Many ISO compatibility features have been added: open/ 4, arithmetic functions, syntax, etc.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 15

e Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

o Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

e Portable saved-states
The predicate gsave_program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

e 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

o Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

o Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
See gsave_program/2.

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format.
SWI-Prolog no longer limits the use of malloc() or uses assumptions on the addresses returned by this
function.

SWI-Prolog 5.6 Reference Manual

16 CHAPTER 1. INTRODUCTION

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New are catch/3, throw/1, abolish/1, write_term/[2, 3],
write_canonical/[1,2] and the C-functions PL_exception() and PL_throw(). The predicates
display/[1,2] and displayqg/[1, 2] have been moved to backcomp, so old code referring
to them will autoload them.

The interface to PL_open_query() has changed. The debug argument is replaced by a bitwise or’ed
flags argument. The values FALSE and TRUE have their familiar meaning, making old code using
these constants compatible. Non-zero values other than TRUE (1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
See resource/3, open_resource/3, and gsave_program/[1,2].

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see on_signal/3 and PL_signal()). Prolog stack overflows now
raise the resource_error exception and thus can be handled in Prolog using catch/ 3.

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatible print message/2, message_hook/3 and print message_lines/3. All
predicates described in [] are now implemented.

As of version 3.3, SWI-Prolog adheres the ISO logical update view for dynamic predicates. See
section 4.13.1 for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section 9.6.2. In addition, both the user-level and
foreign interface supports atoms holding 0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section 8.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 17

e !/0,call/l
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed to call/1 and is local to the condition part of if-then-else as well as the argument of

\+/1.

e atom_chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The
behaviour of the old predicate is available in the —also ISO compliant— atom_codes/2
predicate. Safest repair is a replacement of all at om_chars into atom_codes. If you do not
want to change any source-code, you might want to use

user:goal_expansion (atom_chars (A,B), atom_ codes (A,B)).

o number_chars/2
Same applies for number_chars/2 and number_codes/2.

e feature/2, set_feature/2
These are replaced by the ISO compliant current prolog_flag/2 and
set_prolog_flag/2. The library backcomp provides definitions for these predicates, so
no source must be updated.

o Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1. Now there is also documented current _prolog_flag(argy, Argv).

o dup _stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup_stream/2 was designed and dup/2 from the clib package can with most others.

e op/3
Operators are now local to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

o set_prolog flag(character_escapes, Bool)
This Prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

o current_stream/3 and stream_position
These predicates have been moved to quintus.

1.6.12 Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

SWI-Prolog 5.6 Reference Manual

18 CHAPTER 1. INTRODUCTION

e Argument order in select/3
The list-processing predicate select /3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
7List, 7Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module checkselect will print references to select/3 in your source
code and install a version of select that enters the debugger if select is called and the second
argument is not a list.

This library can be loaded explicitly or by calling check_old_select/0.

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section 1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

o Register the GUI tracer
Using a call to guitracer/0, hooks are installed that replace the normal command-line
driven tracer with a graphical front-end.

e Register PceEmacs for editing files
From your initialisation file. you can load emacs/swi_prolog that cause edit /1 to use
the built-in PceEmacs editor.

1.6.14 Version 5.0 Release Notes

Version 5.0 marks a breakpoint in the philosophy, where SWI-Prolog moves from a dual
GPL/proprietary to a uniform LGPL (Lesser GNU Public Licence) schema, providing a widely usable
Free Source Prolog implementation.

On the technical site the development environment, consisting of source-level debugger, integrated
editor and various analysis and navigation tools progress steadily towards a mature set of tools.

Many portability issues have been improved, including a port to MacOS X (Darwin).

For details, please visit the new website at http://www.swi-prolog.org

1.6.15 Version 5.1 Release Notes

Version 5.1 is a beta-serie introducing portable multi-threading. See chapter 8. In addition it intro-
duces many new facilities to support server applications, such as the new r1imit library to limit
system resources and the possibility to set timeouts on input streams.

1.6.16 Version 5.2 Release Notes

Version 5.2 consolidates the 5.1.x beta series that introduced threading and many related modifications
to the kernel.

SWI-Prolog 5.6 Reference Manual

1.7. DONATE TO THE SWI-PROLOG PROJECT 19

1.6.17 Version 5.3 Release Notes

Version 5.3.x is a development series for adding coroutining, constraints, global variables, cyclic terms
(infinite trees) and other goodies to the kernel. The package JPL, providing a bidirectional Java/Prolog
interface is added to the common source-tree and common binary packages.

1.6.18 Version 5.4 Release Notes

Version 5.4 consolidates the 5.3.x beta series.

1.6.19 Version 5.5 Release Notes

Version 5.5.x provides support for wide characters with UTF-8 and UNICODE I/O (section 2.17.1).
On both 32 and 64-bit hardware Prolog integers are now at minimum 64-bit integers. If available,
SWI-Prolog arithmetic uses the GNU GMP library to provided unbounded integer arithmetic as well
as rational arithmetic. Adding GMP support is sponsored by Scientific Software and Systems Limited,
www.sss.co.nz. This version also incorporates clp(r) by Christian Holzbaur, brought to SWI-
Prolog by Tom Schrijvers and Leslie De Koninck (section A.8).

1.6.20 Version 5.6 Release Notes

Version 5.6 consolidates the 5.5.x beta series.

1.7 Donate to the SWI-Prolog project

If you are happy with SWI-Prolog, you care it to be around for much longer while it becomes faster,
more stable and with more features you should consider to donate to the SWI-Prolog foundation.
Please visit the page below.

http://www.swi-prolog.org/donate.html

1.8 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef/2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute_file_name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.

SWI-Prolog 5.6 Reference Manual

20 CHAPTER 1. INTRODUCTION

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www . sss.co.nz has sponsored the development if
the SSL library as well as unbounded integer and rational number arithmetic.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.

Markus Triska has contributed to various libraries.

Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-
Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

SWI-Prolog 5.6 Reference Manual

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unix man pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl

Welcome to SWI-Prolog (Version 5.6.42)

Copyright (c) 1990-2007 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).

After starting Prolog, one normally loads a program into it using consult /1, which — for historical
reasons — may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the file 1ikes.pl containing clauses for the predicates 1ikes/2:

?— [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?_

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

SWI-Prolog 5.6 Reference Manual

22 CHAPTER 2. OVERVIEW

e A folder (called directory in the remainder of this document) called p1 containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

e A program plwin.exe, providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

e The file-extension .pl is associated with the program plwin.exe. Opening a .p1 file will
cause plwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with the 1ikes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = (value) if it can prove the goal for a certain X.
The user can type the semi-colon (;)! if (s)he wants another solution, or RETURN if (s)he is satisfied,
after which Prolog will say Yes. If Prolog answers No, it indicates it cannot find any (more) answers
to the query. Finally, Prolog can answer using an error message to indicate the query or program
contains an error.

?— likes (sam, X).

X = dahl ;

X = tandoori ;
X = chips ;

No

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (see consult /1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file p1.1ini and on Unix systems .plrc. The file is searched using the file_search_path/2
clauses for user_profile. The table below shows the default value for this search-path. The
phrase (appdata) refers to the Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See also win_folder/2

Unix | Windows
local | . .
home | ~ (appdata)/SWI-Prolog

'On most installations, single-character commands are executed without waiting for the RETURN key.

SWI-Prolog 5.6 Reference Manual

2.3. INITTALISATION FILES AND GOALS 23

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘~f f£ile’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

See also the —s (script) and —F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command-line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
—-f fileor —s file to make Prolog load a file, —-g goal to define an initialisation goal and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command-line.

machine% pl -s load.pl -g go -t halt

It tells SWI-Prolog to load 1oad.pl, start the application using the entry-point go/0 and —instead
of entering the interactive top-level— exit after completing go/0. The —g may be used to suppress
all informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command-
line arguments. A typically seen alternative is to write a file run . p1 with content as illustrated below.
Double-clicking run . pl will start the application.

:— [load]. % load program
:— go. % run it
:— halt. % and exit

Section 2.10.2 discusses further scripting options and chapter 10 discusses the generation of runtime
executables. Runtime executables are a mean to deliver executables that do not require the Prolog
system.

2.4 Command-line options

The full set of command-line options is given below:

—help
When given as the only option, it summarises the most important options. Also available as —h
and —help.

—version
When given as the only option, it summarises the version and the architecture identifier. Also
available as —v.

—arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also —dump-runtime-variables. Also available as —arch.

SWI-Prolog 5.6 Reference Manual

24 CHAPTER 2. OVERVIEW

—dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be
used in shell-scripts to deal with Prolog parameters. This feature is also used by plld
(see section 9.7). Below is a typical example of using this feature. Also available as
—dump-runtime-variables.

eval ‘pl —-—-dump-runtime-variables®
cc —-ISPLBASE/include -LS$SPLBASE/runtime/S$SPLARCH

The option can be followed by =sh to dump in POSIX shell format (default) or cmd to dump
in MS-Windows cmd . exe compatible format.

—win_app
This option is available only in plwin.exe and is used for the start-menu item. If causes
plwin to start in the folder . . . \My Documents\Prolog or local equivalent thereof (see

win_folder/2). The Prolog subdirectory is created if it does not exist.

—quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as —q.

-Lsize[kmg]
Give local stack limit (default 16Mb on 32-bit and 32Mb on 64-bit hardware). Note that there
is no space between the size option and its argument. By default, the argument is interpreted
in Kbytes. Postfix the argument with m for Mbytes or g for Gbytes. The following example
specifies 64 Mbytes local stack.

% pl -L64m

A maximum is useful to stop buggy programs from claiming all memory resources. —LO sets
the limit to the highest possible value.” See section 2.18.

-Gsize[kmg]
Give global stack limit (4 Mbytes default). See —L for more details.

-Tsize[kmg]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. See —L for more details.

-Asize[kmg]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See —L for more details.

-cfile...
Compile files into an ‘intermediate code file’. See section 2.10.

20n 64-bit systems there is no relevant limit and —10 is interpreted as 1Gb. It is possible to ask for larger stack-sizes
such as -L.32g

SWI-Prolog 5.6 Reference Manual

2.4. COMMAND-LINE OPTIONS 25

-0 output
Used in combination with —c or —b to determine output file for compilation.

-0
Optimised compilation. See current _prolog_flag/2 flag opt imise for details.

—-nodebug
Disable debugging. See the current prolog.-flag/2 flag generate_debug_info for
details.

-S file
Use file as a script-file. The script file is loaded after the initialisation file specified with the
—f fileoption. Unlike -f file, using —s does not stop Prolog from loading the personal
initialisation file.

-f file
Use file as initialisation file instead of the default .plrc (Unix) or pl.ini (Windows).
‘—f none’ stops SWI-Prolog from searching for a startup file. This option can be used as an
alternative to —s f1ile that stops Prolog from loading the personal initialisation file. See also
section 2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
(scripty . rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program-name. -F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a script iso. rc and then select ISO compatibility mode using
pl —-F iso or make alink from iso-pl topl.

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the

welcome message. The welcome message can thus be suppressed by giving —~g true. goal
can be a complex term. In this case quotes are normally needed to protect it from being
expanded by the shell. A save way to run a goal non-interactively is here:

% pl <options> -g go,halt -t ’"halt(l)’

-t goal
Use goal as interactive top-level instead of the default goal prolog/0. goal can be a complex
term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. If the toplevel raises an exception, this is printed as an uncaught error and the toplevel is
restarted. This flag also determines the goal started by break /0 and abort /0. If you want
to stop the user from entering interactive mode start the application with ‘~g goal’ and give
‘halt’ as top-level.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get_single_char/1. By default manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. This flag is sometimes required for smooth interaction with other applications.

SWI-Prolog 5.6 Reference Manual

26 CHAPTER 2. OVERVIEW

—nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 9.6.20 for details.

—home=DIR
Use DIR as home directory. See section 9.8 for details.

-X bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the -b or —-c option or a program saved using
gsave_program/[1,2].

-p alias=pathl[:path2 ...]
Define a path alias for file_search_path. alias is the name of the alias, pathl ... is a list of
values for the alias. On Windows the list-separator is ;. On other systems it is :. A value
is either a term of the form alias(value) or pathname. The computed aliases are added to
file_search path/2 using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file-location mechanism.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current_prolog_flag/2 using the flag argv for obtaining the command-line
arguments.

The following options are for system maintenance. They are given for reference only.

-b initfile ... -c file ...
Boot compilation. initfile ... are compiled by the C-written bootstrap compiler, file ... by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level to level. Only has effect if the system is compiled with the ~-DO_DEBUG flag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setg auto-mode-alist
(append
" (("\\.pl" . prolog-mode))
auto-mode—-alist))
(setg prolog-program—-name "pl")
(setqg prolog-consult-string "[user].\n")
;If you want this. 1Indentation is either poor or I don’t use
;it as intended.
; (setg prolog-indent-width 8)

SWI-Prolog 5.6 Reference Manual

2.6. ONLINE HELP 27

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el filee for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 fromhttp://wl.858.telia.com/ u85810764/Prolog-mode/index.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file MANUAL’. The file helpidx provides an index
into this file. 'MANUAL’ is created from the IZTgX sources with a modified version of dvitty,
using overstrike for printing bold text and underlining for rendering italic text. XPCE is shipped
with swi_help, presenting the information from the online help in a hypertext window. The Prolog
flag write_help_with_overstrike controls whether or not help/1 writes its output using
overstrike to realise bold and underlined output or not. If this Prolog flag is not set it is initialised by
the help library to t rue if the TERM variable equals xterm and false otherwise. If this default
does not satisfy you, add the following line to your personal startup file (see section 2.2):

:— set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent to help (help/1).

help(+What)
Show specified part of the manual. What is one of:

iName;/(Arity) Give help on specified predicate

iName,, Give help on named predicate with any arity or C interface
function with that name
iSectiony, Display specified section. Section numbers are dash-

separated numbers: 2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained using apropos/1.

Examples:
?- help (assert) . Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual

?—- help (’PL.retry’) . Give help on interface function PL_retry()

See also apropos/1, and the SWI-Prolog home page at
http://www.swi-prolog.org, which provides a FAQ, an HTML version of man-
ual for online browsing and HTML and PDF versions for downloading.

apropos(+Pattern)
Display all predicates, functions and sections that have Patfern in their name or summary
description. Lowercase letters in Pattern also match a corresponding uppercase letter. Example:

SWI-Prolog 5.6 Reference Manual

28 CHAPTER 2. OVERVIEW

(I Repeat last query

'nr. Repeat query numbered (nr)
!'str. | Repeat last query starting with (str)
h. Show history of commands

'h. Show this list

Table 2.1: History commands

?— apropos (file) . Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+7oExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the form Name/Arity or a term of the form Module:Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref /0.

explain(+ToExplain, -Explanation)
Unify Explanation with an explanation for ToExplain. Backtracking yields further explanations.

2.7 Command-line history

SWI-Prolog offers a query substitution mechanism called ‘history’. The availability of this feature
is controlled by set prolog_flag/2, using the history Prolog flag. By default, history is
available if the Prolog flag readline is false. To enable this feature, remembering the last 50
commands, put the following into your startup file (see section 2.2):

:— set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.8 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database. These
values may be reused in further top-level queries as $Var. Only the latest binding is available. Exam-
ple:

Note that variables may be set by executing =/2:

6 ?- X = statistics.
X = statistics

Yes

7 ?- S$SX.

28.00 seconds cpu time for 183,128 inferences

SWI-Prolog 5.6 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 29

1 ?- maplist(plus(l), "hello", X).
X = [105,102,109,109,112]

Yes

2 ?— format (" "s"n’, [$X]).

ifmmp

Yes
3 72—

Figure 2.1: Reusing top-level bindings

4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes
Yes
8 7-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port Byrd box model tracer [,

] with two additional ports. The optional unify port allows the user to inspect
the result after unification of the head. The exception port shows exceptions raised by throw/1 or
one of the built-in predicates. See section 4.9.

The standard ports are called call, exit, redo, fail and unify. The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (see spy/1
and debug/0) or when an exception is raised.

The interactive top-level goal trace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal
is printed using the Prolog predicate write_term/2. The style is defined by the Prolog flag
debugger_print_options and can be modified using this flag or using the w, p and d com-
mands of the tracer.

On leashed ports (set with the predicate 1leash/1, default are call, exit, redo and fail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command-line option —t ty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/ 1) on the current predicate.

SWI-Prolog 5.6 Reference Manual

30 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).

Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 < 2 ? creep
Fail: (5) 3 < 2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 21, 2)

Yes

[trace] 3 ?-

Figure 2.2: Example trace

— (No spy)
Remove the spy point (see nospy /1) from the current predicate.

/ (Find)
Search for a port. After the °/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/£ Search for any fail port

/fe solve Search for a fail or exit port of any goal with name
solve

/c solve(a, -) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member (_, _) Search for any port on member /2. This is equiv-
alent to setting a spy point on member /2.

. (Repeat find)
Repeat the last find command (see /).

A (Alternatives)
Show all goals that have alternatives.

C (Context)

SWI-Prolog 5.6 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 31

Toggle ‘Show Context’. If on, the context module of the goal is displayed between square
brackets (see section 5). Defaultis of f.

L (Listing)
List the current predicate with 1isting/1.

a (Abort)
Abort Prolog execution (see abort /0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set the max_depth(Depth) option of debugger_print_options, limiting the depth to
which terms are printed. See also the w and p options.

e (Exit)
Terminate Prolog (see halt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘7).

i (Ignore)
Ignore the current goal, pretending it succeeded.

1 (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the Prolog flag debugger print_options to [quoted (true),
portray (true), max_depth(10), priority(699)]. This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

SWI-Prolog 5.6 Reference Manual

32 CHAPTER 2. OVERVIEW

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the Prolog flag debugger print_optionsto [quoted (true), attributes (write), priorit:
bypassing portray/1, etc.

The ideal 4 port Byrd box model [] as described in many Prolog books
[] is not visible in many Prolog implementations because code optimisa-
tion removes part of the choice- and exit-points. Backtrack points are not shown if either the goal
succeeded deterministically or its alternatives were removed using the cut. When running in debug
mode (debug/0) choice points are only destroyed when removed by the cut. In debug mode, last
call optimisation is switched off.’

Reference information to all predicates available for manipulating the debugger is in section 4.38.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using consult /1, or the list abbre-
viation. It is common practice to organise a project as a collection of source files and a load-file, a
Prolog file containing only use_module/ [1, 2] or ensure_loaded/1 directives, possibly with
a definition of the entry-point of the program, the predicate that is normally used to start the program.
This file is often called 1oad.pl. If the entry-point is called go, a typical session starts as:

% pl

<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
plwin.exe tobe started in the directory holding 1oad.pl. Prolog loads 1cad. pl before entering
the top-level.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

3This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 5.6 Reference Manual

2.10. COMPILATION 33

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. The
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

If the first letter of a Prolog file is #, the first line is treated as comment.* To create a Prolog script,
make the first line start like this:

#!/path/to/pl (options) —s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl (options) —s (script) —— (ScriptArguments)

Instead of —s, the user may use — £ to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

#!/usr/bin/pl -g -t main -f

eval :-—
current_prolog_flag(argv, Argv),
append(_, [-—-l1Args], Argv),
concat_atom(Args, ' ', SingleArqg),
term_to_atom(Term, SingleArqg),
Val is Term,
format (" "'w'n’, [Vall).

main :-—
catch(eval, E, (print_message(error, E), fail)),
halt.

main :-—
halt (1) .

And here are two example runs:

% eval 1+2

w

% eval foo
ERROR: Arithmetic: ‘foo/0’ is not a function

o
°

“The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 5.6 Reference Manual

34 CHAPTER 2. OVERVIEW

The Windows version supports the # ! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file. The # ! line provides for this, providing a
more flexible approach than changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source file:

#!/usr/bin/pl -LO -TO0 -GO -s

Note the use of /usr/bin/pl, which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction of PrologScript (see section 2.10.2), using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>

PL=pl
exec SPL —-f none —g "load_files ([’ S$base/locad’], [silent (true)])" \
-t go —— $x
go :-—
current_prolog_flag(argv, Arguments),
append (_SytemArgs, [--|Args], Arguments), !,
go (Args) .
go (Args) :-—

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a . bat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created using gsave _program/ [1, 2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter 10.

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 35

Compilation using the -c command-line option

This mechanism loads a series of Prolog source files and then creates a saved-state as
gsave_program/ 2 does. The command syntax is:

% pl [option ...] [-o output] -c file

The options argument are options to gsave_program/2 written in the format below. The option-
names and their values are described with gsave_program/2.

——option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through 1oad.pl, use the command

[}

% pl ——goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

[}

% pl

<banner>

?— [load].

?— gsave_program (myprog,
[goal (main),

stand_alone (true)

1.

?7— halt.

2.11 Environment Control (Prolog flags)

The predicates current _prolog_flag/2 and set_prolog_flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current_prolog_flag(?Key, -Value) [ISO]

The predicate current prolog_flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With the ‘Key’ instantiated it unifies the value of the Prolog flag. Flag
values are typed. Flags marked as bool can have the values t rue and false. Some Prolog
flags are not defined in all versions, which is normally indicated in the documentation below as
“if present and true”. A Boolean Prolog flag is true iff the Prolog flag is present and the Value
is the atom t rue. Tests for such flags should be written as below.

(current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>

)

SWI-Prolog 5.6 Reference Manual

36

CHAPTER 2. OVERVIEW

abort_with_exception (bool, changeable)
Determines how abort /0 is realised. See the description of abort /0 for details.

address_bits (integer)
Address-size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc_margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See also PL _register_atom().

allow_variable_name_as_functor (bool, changeable)
If true (default is false), Functor (arg) isread as if it was written ’ Functor’ (arg).
Some applications use the Prolog read/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by calling read_term/2
using the option variable_names and binding the variables to their name. Using this
feature, F(x) can be turned into valid syntax for such script languages. Suggested by
Robert van Engelen. SWI-Prolog specific.

argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned.

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to select
foreign files for the right architecture. See also section 9.4 and file_search_path/2.

associate (atom, changeable)
On Windows systems, this is set to the filename extension (pl (default) or pro (can be
selected in the installer)) associated with plwin.exe.

autoload (bool, changeable)
If t rue (default) autoloading of library functions is enabled. Note that autoloading only
works if the flag unknown is not set to fail. See section 2.13.

backquoted string (bool, changeable)
If true (default false), read translates text between backquotes into a string object
(see section 4.23). This flag is mainly for compatibility to LPA Prolog.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min_integer and
max_integer. If false integers can be arbitrarily large and the min_integer and
max_integer are not present. See section 4.26.2.

c_cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 9.7.

c_ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section 9.7.

c_libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section 9.7.

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 37

char_conversion (bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char_conversion/2.

character_escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

compiled_at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides the __DATE__ and __TIME__ macros.

console_menu (bool)
Set to true in plwin.exe to indicate the console supports menus. See also
section 4.34.2.

cpu_count (integer, changeable)

Number of physical CPUs in the system. Unfortunately there is no standard to get this
number, so on most operating systems this flag is not available. It is marked read-write
both to allow obtaining this value later and to allow pretending the system has more or
less processors. See also thread_setconcurrency/2 and the library thread.
Currently this flag is supported in Windows and Linux if /proc is enabled. If you can
provide us with a C-code fragment getting the number for a specific OS, please submit an
enhancement report at http://gollem.science.uva.nl/bugzilla/

dde (bool)
Set to t rue if this instance of Prolog supports DDE as described in section 4.42.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy-points (see spy/1) and trace-points (see trace/1). In addition, last-call optimi-
sation is disabled and the system is more conservative in destroying choice points to
simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug_on_error (bool, changeable)
If t rue, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also fileerrors/2 and the Prolog
flag report_error. May be changed. Default is t rue, except for the runtime version.

debugger_print_options (ferm, changeable)
This argument is given as option-list to write_term/2 for printing goals by the de-
bugger. Modified by the ‘w’, ‘p” and ‘(N) d’ commands of the debugger. Default is
[quoted (true), portray(true), max_depth(10), attributes (portray)].

debugger_show_context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is_dialect (swi) :-—
catch (current_prolog_flag(dialect, swi), _, fail).

SWI-Prolog 5.6 Reference Manual

38 CHAPTER 2. OVERVIEW

double_quotes (codes,chars,atom,string, changeable)
This flag determines how double quoted strings are read by Prolog and is —like
character_escapes— maintained for each module. If codes (default), a list of
character-codes is returned, if chars a list of one-character atoms, if atom double
quotes are the same as single-quotes and finally, st ring reads the text into a Prolog
string (see section 4.23). See also atom_chars/2 and atom_codes/2.

dynamic _stacks (bool)
If true, the system uses some form of ‘sparse-memory management’ to realise the
stacks. If false, malloc()/realloc() are used for the stacks. In earlier days this had
consequences for foreign code. As of version 2.5, this is no longer the case.

Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter.
On most systems using sparse-memory management memory is actually returned to the
system after a garbage collection or call to t rim_stacks/0 (called by prolog/0 after
finishing a user-query).

editor (atom, changeable)
Determines the editor used by edit /1. See section 4.4 for details on selecting the editor
used.

emacs_inferior_process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.17.1 for details.

executable (atom)
Path-name of the running executable. Used by gsave_program/2 as default emulator.

file_name_variables (bool, changeable)
If true (default false), expand $Svarname and ~ in arguments of built-in predicates
that accept a file name (open/3, exists_file/1, access_file/2, etc.). The
predicate expand_file_ name/2 can be used to expand environment variables and
wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

float_format (atom, changeable)

C-library printf() format specification used by write/1 and friends to determine how
floating point numbers are printed. The default is $g. The specified value is passed to
printf() without further checking. For example, if you want more digits printed, $.12g
will print all floats using 12 digits instead of the default 6.

When using quoted-write, the output is guaranteed to contain a decimal dot or ex-
ponent, so read/1 reads a floating point number. See also format/[1l,2],
write_term/[2, 3].

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

generate_debug_info (bool, changeable)
If t rue (default) generate code that can be debugged using t race/0, spy/1, etc. Can

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 39

be set to false using the —-nodebug. The predicate 1oad_-files/2 restores the value
of this flag after loading a file, causing modifications to be local to a source file. Many of
the libraries have : - set_prolog_flag(generate_debug_info, false) to
hide their details from a normal trace.’

gmp_version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 9.6.7.

gui (bool)
Set to t rue if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer > 0, support Unix csh (1) like history as described in section 2.7. Otherwise,
only support reusing commands through the command-line editor. The default is to set
this Prolog flag to 0 if a command-line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses its home directory to find
its startup file as (home)/boot32.prc (32-bit machines) or (home)/boot64.prc
(64-bit machines) and to find its library as (home)/1library.
hwnd (integer)
Inplwin.exe, this refers to the MS-Windows window-handle of the console window.
integer_rounding_function (down,toward_zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C-compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:
e The //2 (float division) always return a float, even if applied to integers that can be
divided.

In the standard order of terms (see section 4.6.1), all floats are before all integers.

e atom_length/2 yields an instantiation error if the first argument is a number.
e clause/ [2, 3] raises a permission error when accessing static predicates.

abolish/[1, 2] raises a permission error when accessing static predicates.

large files (bool)
If present and t rue, SWI-Prolog has been compiled with large file support (LFS) and is
capable to access files larger than 2GB on 32-bit hardware. Large file-support is default
on installations built using configure that support it and may be switched off using
the configure option ——disable-largefile.

max_arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max_integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.26.2.

5In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates on anticipated changes to the compiler.

SWI-Prolog 5.6 Reference Manual

40 CHAPTER 2. OVERVIEW

max_tagged _integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 1 word
storage. Larger integers are represented as ‘indirect data’ and require significantly more
space.

max_threads (integer)
Provided on multi-threaded versions to indicate the maximum number of Prolog threads
supported. Currently (version 5.6.27) the limit is 100.

min_integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.26.2.

min_tagged _integer (integer)
Start of the tagged-integer value range.

occurs_check (atom, changeable)

This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using t rue, unification behaves as unify with_occurs_check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs_check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

open_shared _object (bool)
If true, open_shared_object/2 and friends are implemented, providing access to
shared libraries (. so files) or dynamic link libraries (. DLL files).

optimise (bool, changeable)
If t rue, compile in optimised mode. The initial value is t rue if Prolog was started with
the —O command-line option.

Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
dant t rue/ 0 that may result from expand_goal/2.

Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation
defined.

pipe (bool, changeable)
If true, open (pipe (command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

prompt_alternatives_on (atom, changeable)
Determines prompting for alternatives in the Prolog toplevel. Default is determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choicepoints. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 41

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

resource_database (atom)
Set to the absolute-filename of the attached state. Typically this is the file boot 32 .prc,
the file specified with —x or the running executable. See also resource/3.

report_error (bool, changeable)
If true, print error messages, otherwise suppress them. May be changed. See also the
debug_on_error Prolog flag. Default is t rue, except for the runtime version.

runtime (bool)
If present and t rue, SWI-Prolog is compiled with -DO_RUNTIME, disabling various
useful development features (currently the tracer and profiler).

saved_program (bool)
If present and true, Prolog has been started from a state saved with
gsave_program/[1,2].

shared_object_extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .d11 for Windows. Used for locating files using the file type executable.
See also absolute_file_name/3.

shared_object_search_path (arom)
Name of the environment variable used by the system to search for shared objects.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command-line option
-nosignals is active. See section 9.6.20 for details.

system_thread _id (int)
Available in multi-threaded version (see section 8) where the operating system provides
system-wide integer thread identifiers. The integer is the thread-identifier used by the
operating system for the calling thread. See also thread_-self/1.

last_call_optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is equal to the debug flag. As programs may run out of stack if last-call optimisation
is omitted, it is sometimes necessary to enable it during debugging.

timezone (integer)
Offset in seconds west of GMT of the current time-zone. Set at initialization time
from the timezone variable associated with the POSIX tzset() function. See also
convert_time/2.

toplevel_print_anon (bool, changeable)
If t rue, top-level variables starting with an underscore (_) are printed normally. If false
they are hidden. This may be used to hide bindings in complex queries from the top-level.

toplevel_print_options (term, changeable)
This argument is given as option-list to write_term/2 for printing results of queries.
Defaultis [quoted (true), portray(true), max_depth(10), attributes (portray)].

SWI-Prolog 5.6 Reference Manual

42 CHAPTER 2. OVERVIEW

toplevel_var _size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. See section 2.8.

trace_gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed. Values are reported in bytes as G+1', where G is the global
stack value and T’ the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of bytes allocated,
but not in use. Below is an example output.

% GC: gained 236,416+163,424 in 0.00 sec; used 13,448+5,808; free 72,568+

tty_control (bool)
Determines whether the terminal is switched to raw mode for get_single_char/1,
which also reads the user-actions for the trace. May be set. See also the +/-tty
command-line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C-
compiler used to compile this version of SWI-Prolog either defines __unix__ or unix.
On other systems this flag is not available.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icates fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined and if error (default), an existence_error exception
is raised. This flag is local to each module. Switching this flag to fail disables
autoloading and thus forces complete and consistent use of use module/[1,2] to
load the required libraries.

verbose (Atom, changeable)
This flags is used by print message/2. If its value is silent, messages of type
informational and banner are suppressed. The —g switches the value from the
initial normal to silent.

verbose_autoload (bool, changeable)
If t rue the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose_load (bool, changeable)
If false normal consult messages will be suppressed. Default is t rue. The value of this
flag is normally controlled by the option silent(Bool) provided by load_files/2.

verbose_file_search (bool, changeable)
If true (default false), print messages indicating the progress of
absolute_file name/[2, 3] in locating files. Intended for debugging com-
plicated file-search paths. See also file_search_path/2.

version (integer)
The version identifier is an integer with value:

10000 x Major + 100 x Minor 4 Patch

SWI-Prolog 5.6 Reference Manual

2.12. AN OVERVIEW OF HOOK PREDICATES 43

Note that in releases up to 2.7.10 this Prolog flag yielded an atom holding the three
numbers separated by dots. The current representation is much easier for implementing
version-conditional statements.

version_data (swi(Major, Minor, Patch, Extra))
Part of the dialect compatibility layer, See also the Prolog flag dialect and section C.
Extra provides platform specific version information. Currently it is simply unified to [].

version_git (atom)
Available if created from a git repository. See git-describe for details.

windows (bool)
If present and t rue, the operating system is an implementation of Microsoft Windows
(NT/2000/XP, etc.). This flag is only available on MS-Windows based versions.

write_attributes (atom, changeable)
Defines how write/1 and friends write attributed variables. The option values are
described with the attributes option of write_term/3. Defaultis ignore.

write_help_with_overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and t rue it prints
bold and underlined text using overstrike.

xpce (bool)
Available and set to t rue if the XPCE graphics system is loaded.

Xpce_version (atom)
Auvailable and set to the version of the loaded XPCE system.

set_prolog_flag(+Key, +Value) [1SO]
Define a new Prolog flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission_error. If the provided Value does not match the type of the flag, a
type_error is raised.

In addition to ISO, SWI-Prolog allows for user-defined Prolog flags. The type of the flag is de-
termined from the initial value and cannot be changed afterwards. Defined types are boolean
(if the initial value is one of false, true, on or off), atom if the initial value is any other
atom, integer if the value is an integer that can be expressed as a 64-bit signed value. Any
other initial value results in an untyped flag that can represent any valid Prolog term.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

e portray/l
Hook into write_term/3 to alter the way terms are printed (ISO).

o message_hook/3
Hook into print_message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

SWI-Prolog 5.6 Reference Manual

44

CHAPTER 2. OVERVIEW

library_directory/1
Hook into absolute_file_name/ 3 to define new library directories. (most Prolog system).

o file_search_path/2

Hook into absolute_file_name/ 3 to define new search-paths (Quintus/SICStus).

term_expansion/2
Hook into 1oad_files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog system).

goal_expansion/2
Same as term_expansion/2 for individual goals (SICStus).

prolog_load _file/2

Hook into load_-files/2 to load other data-formats for Prolog sources from ‘non-file’ re-
sources. The load_files/2 predicate is the ancestor of consult/1, usemodule/1,
etc.

prolog_edit:locate/3
Hook into edit /1 to locate objects (SWI).

prolog_edit:edit_source/l
Hook into edit /1 to call some internal editor (SWI).

prolog_edit:edit_command/2
Hook into edit /1 to define the external editor to use (SWI).

prolog_list_goal/l
Hook into the tracer to list the code associated to a particular goal (SWI).

prolog_trace _interception/4
Hook into the tracer to handle trace-events (SWI).

prolog:debug_control_hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control-
predicates to higher-level libraries.

prolog:help_hook/1
Hook in help/0, help/1 and apropos/1 to extend the help-system.

resource/3
Defines a new resource (not really a hook, but similar) (SWI).

exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

attr_unify_hook/2
Unification hook for attributed variables. Can be defined in any module. See section 6.1 for
details.

SWI-Prolog 5.6 Reference Manual

2.13. AUTOMATIC LOADING OF LIBRARIES 45

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails the auto loader is activated. On first activation an
index to all library files in all library directories is loaded in core (see 1ibrary directory/1 and
file_search_path/2). If the undefined predicate can be located in one of the libraries that library
file is automatically loaded and the call to the (previously undefined) predicate is restarted. By default
this mechanism loads the file silently. The current _prolog_flag/2 verbose_autoload is
provided to get verbose loading. The Prolog flag aut ocload can be used to enable/disable the entire
auto load system.

The auto-loader only works if the unknown flag (see unknown/2) is set to t race (default). A
more appropriate interaction with this flag should be considered.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 5. The files are loaded with use module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX . p1 that contains an index to all library files in the directory. This file consists of lines of
the following format:

index (Name, Arity, Module, File).

The predicate make/0 updates the autoload index. It searches for all library directories
(see library.-directory/1 and file_search_path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists updating is achieved by loading this file, normally containing a directive calling
make_library_index/2. Otherwise make_library_index/1 is called, creating an index for
all » . p1 files containing a module.
Below is an example creating a completely indexed library directory.

o°

mkdir “/lib/prolog
cd 'S
pl —-g true -t 'make_library_index(.)’

o oP

If there are more than one library files containing the desired predicate the following search schema
is followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appearinthe 1ibrary directory/1
predicate and within the directory alphabetically.

make_library_index(+Directory)
Create an index for this directory. The index is written to the file "INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make_library_index(+Directory, +ListOfPatterns)
Normally used in MKINDEX . p1, this predicate creates INDEX . p1 for Directory, indexing all
files that match one of the file-patterns in ListOfPatterns.

SWI-Prolog 5.6 Reference Manual

46 CHAPTER 2. OVERVIEW

Sometimes library packages consist of one public load file and a number of files used by this
load-file, exporting predicates that should not be used directly by the end-user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX . p1,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

:— make_library_index(’.’,

[I*.pl/,
"trace/browse.pl’

1)

reload library_index
Force reloading the index after modifying the set of library directories by changing the rules for
library. directory/1, file_search_path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX . pl files. Check make_library_index/[1, 2]
and make /0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload_library_index/0 is necessary if
directories are removed or the order of the library directories is changed.

2.14 Garbage Collection

SWI-Prolog provides garbage-collection, last-call optimization and atom garbage collection. These
features are controlled using Prolog flags (see current _prolog_flag/2).

2.15 Syntax Notes

SWI-Prolog uses ISO-Prolog standard syntax, which is closely compatible to Edinburgh Prolog syn-
tax. A description of this syntax can be found in the Prolog books referenced in the introduction.
Below are some non-standard or non-common constructs that are accepted by SWI-Prolog:

o /x ../* ...x/ ...x/
The /x .. .x/ comment statement can be nested. This is useful if some code with /* .. .x/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to use UCS/Unicode as provided by the C-library wchar_t based
primitives. See also section 2.17.

SWI-Prolog 5.6 Reference Manual

2.15. SYNTAX NOTES 47

Character Escape Syntax

Within quoted atoms (using single quotes: ' <atom>’ special characters are represented using
escape-sequences. An escape sequence is lead in by the backslash (\) character. The list of es-
cape sequences is compatible with the ISO standard, but contains one extension and the interpretation
of numerically specified characters is slightly more flexible to improve compatibility.

\a

Alert character. Normally the ASCII character 7 (beep).
\Db

Backspace character.
\c

No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Not supported by ISO. Example:

format (' This is a long line that would look better if it was \c
split across multiple physical lines in the input’)

\(RETURN)
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention as \ ¢ but ISO compatible.

\f
Form-feed character.
\n
Next-line character.
\r
Carriage-return only (i.e. go back to the start of the line).
\t
Horizontal tab-character.
\v

Vertical tab-character (ASCII 11).

\xXX. .\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility to the older Edinburgh standard.
The code \xa\ 3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters specified
this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard fixing two problems. First of all, where \x
defines a numeric character code, it doesn’t specify the character set in which the character
should be interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog
syntax.

SWI-Prolog 5.6 Reference Manual

48 CHAPTER 2. OVERVIEW

\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\(character)
Any character immediately preceded by a \ and not covered by the above escape sequences is
copied verbatim. Thus, 7 \\’ is an atom consisting of a single \ and " \’’ and '’’’ both
describe the atom with a single ’ .

Character escaping is only available if the current _prolog_flag(character_escapes,
is active (default). See current_prolog_flag/2. Character escapes conflict with writef/2 in
two ways: \40 is interpreted as decimal 40 by writef/2, but character escapes handling by read
has already interpreted as 32 (40 octal). Also, \1 is translated to a single ‘I’. It is advised to use the
more widely supported format/[2, 3] predicate instead. If you insist upon using writef/2,
either switch character_escapes to false, oruse double \\,asinwritef (" \\1’).

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as (radix)’ <number>, where (radix) is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0 [bxo] (number). For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is based on version 4.1.0 of the Unicode stan-
dard. Please note that char_type/2 and friends, intended to be used with all text except Prolog
source code is based on the C-library locale-based classification routines.

o Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXxXXX and \UXXXXXXXX (see section 2.15.1) were introduced to specify Unicode code
points in ASCII files.

o Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.® In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore ().
Otherwise it is an atom. Note that many languages do not have the notion of character-case. In
such languages variables must be written as _name.

*http://www.unicode.org/reports/tr3l/

SWI-Prolog 5.6 Reference Manual

true)

2.15. SYNTAX NOTES 49

o White space
All characters marked as separators in the Unicode tables are handled as layout characters.

e Other characters
The first 128 characters follow the ISO Prolog standard. All other characters not covered by the
rules above are considered ‘solo’ characters: they form single-character atoms. We would like
to have a more appropriate distinction between what is known to Prolog as ‘solo’ characters and
‘symbol’ characters.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases however people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled by
style_check/1) if a variable is used only once. The system can be informed a variable is known
to appear once by starting it with an underscore. E.g. _Name. Please note that any variable, except
plain __ shares with variables of the same name. The term t (_X, _X) isequivalentto t (X, X),
which is different fromt (_, _).

As Unicode requires variables to start with an underscore in many languages this schema needs to
be extended.’ First we define the two classes of named variables.

o Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an
uppercase letter. E.g. __var or _Var.

o Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.®

Any normal variable appearing exactly ones in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.
Singleton messages can be suppressed using the style_check/1 directive.

test().
test(_a). Singleton variables: [_a]
test(A). Singleton variables: [A]
test(_A).

test(__a).

test(_, _).

test(_a, _a).
test(__a, __a). | Singleton-marked variables appearing more than once: [-_a]
test(_A, _A). | Singleton-marked variables appearing more than once: [_A]
test(A, A).

7 After a proposal by Richard O’Keefe.
8Some Prolog dialects write variables this way.

SWI-Prolog 5.6 Reference Manual

50 CHAPTER 2. OVERVIEW

2.16 Infinite trees (cyclic terms)

SWI-Prolog has limited support for infinite trees, also known as cyclic terms. Full support requires
special code in all built-in predicates that require recursive exploration of a term. The current version
supports cycles terms in the pure Prolog kernel including the garbage collector and in the follow-
ing predicates: =../2, ==/2, =@=/2, =/2, @</2, @=</2, @>=/2, @>/2, \==/2, \=0=/2,
\=/2,acyclic_term/1,bagof/3, compare/3, copy_term/2,cyclic_term/1,dif/2,
duplicate_term/2, findall/3, ground/1l, term_hash/2, numbervars/[3,4],
recorda/3, recordz/3, setof/3, term_variables/2, throw/1, when/2, write/1
(incomplete) .

2.17 Wide character support

SWI-Prolog supports wide characters, characters with character codes above 255 that cannot be rep-
resented in a single byte. Universal Character Set (UCS) is the ISO/IEC 10646 standard that specifies
a unique 31-bits unsigned integer for any character in any language. It is a superset of 16-bit Unicode,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages and character classification (uppercase, lowercase,
digit, etc.) and operations such as case-conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section 4.23).
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in section 9 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.17.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 ... 127
represent simply the corresponding US-ASCII character, while bytes 128 ... 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
Unicode standard, represented by pairs of bytes is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ence get_code/2 and put _code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flag encoding, which is initialised
from the environment. If the environment variable LANG ends in "UTF-8”, this encoding is as-
sumed. Otherwise the default is text and the translation is left to the wide-character functions
of the C-library. ° The encoding can be specified explicitly in 1oad_files/2 for loading Pro-
log source with an alternative encoding, open/4 when opening files or using set_stream/2 on
any open stream. For Prolog source files we also provide the encoding/1 directive that can be

The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 5.6 Reference Manual

2.17. WIDE CHARACTER SUPPORT 51

used to switch between encodings that are compatible to US-ASCII (ascii, iso_latin_1, utf8
and many locales). See also section 3.1.3 for writing Prolog files with non-US-ASCII characters
and section 2.15.1 for syntax issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but generates errors and warnings
on encountering values above 127.

iso_latin_1
8-bit encoding supporting many western languages. This causes the stream to be read and
written fully untranslated.

text
C-library default locale encoding for text files. Files are read and written using the C-library
functions mbrtowc() and wertomb(). This may be the same as one of the other locales, notably
it may be the same as iso_latin_1 for western languages and ut £8 in a UTF-8 context.
utf8
Multi-byte encoding of full UCS, compatible to ascii. See above.
unicode_be
Unicode Big Endian. Reads input in pairs of bytes, most significant byte first. Can only repre-
sent 16-bit characters.
unicode_le

Unicode Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream on
these errors can be controlled using set _stream/2. Initially the terminal stream write the charac-
ters using Prolog escape sequences while other streams generate an I/O exception.

BOM: Byte Order Mark

From section 2.17.1, you may have got the impression text-files are complicated. This section deals
with a related topic, making live often easier for the user, but providing another worry to the pro-
grammer. BOM or Byte Order Marker is a technique for identifying Unicode text-files as well as the
encoding they use. Such files start with the Unicode character OXFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or ...

Some formats start of as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the use

SWI-Prolog 5.6 Reference Manual

52 CHAPTER 2. OVERVIEW

of a UTF-8 BOM. In other cases there is additional information telling the encoding making the use
of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text-files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available through st ream_property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

2.18 System limits

2.18.1 Limits on memory areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command-line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by a k or m. With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), with m, the value is interpreted in Mbytes (1024 x 1024 bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more gener-
ally to 2bits-per-long—5 g

The PrologScript facility described in section 2.10.2 provides a mechanism for specifying options
with the load-file. On Windows the default stack-sizes are controlled using the Windows registry
on the key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default stack size in Kbytes.
A GUI for modifying these values is provided using the XPCE package. To use this, start the XPCE
manual tools using manpce/ 0, after which you find Preferences in the File menu.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the area to
store atoms, functors, predicates and their clauses, records and other dynamic data. As of SWI-Prolog
2.8.5, no limits are imposed on the addresses returned by malloc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space up to the limit is claimed at startup and committed and released while the area grows
and shrinks. On Win32 platform this is realised using VirtualAlloc() and friends. On Unix systems
this is realised using mmap().

2.18.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap, removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings. read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with style_check/1.

The number of atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines
this is virtually unlimited. See also section 9.6.2.

SWI-Prolog 5.6 Reference Manual

2.18. SYSTEM LIMITS

53

Option

Default

Area name

Description

16M

32M

32M

IM

local stack

global stack

trail stack

argument stack

The local stack is used to store
the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the al-
ternatives are cut off with the
1/0 predicate or no choice points
have been created since the invo-
cation and the last subclause is
started (last call optimisation).
The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.

The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms are
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.

In addition, this stack is used by
some built-in predicates to han-
dle cyclic terms. Its default size
limit is proportional to the global
stack limit such that it will never
overflow.

Table 2.2: Memory areas

SWI-Prolog 5.6 Reference Manual

54 CHAPTER 2. OVERVIEW

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 Mb for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Nesting of terms Many build-in predicates process nested terms using recursive C functions. Too
deeply nested terms generally cause a fatal crash. All these functions avoid recursion on the
right-most argument and therefore terms are not limited on the nesting level of the last argument.
This notably covers long lists. Most functions use a stack for correct handling of rational trees
(cyclic terms). This stack is segmented, where different segments are allocated using malloc().
Overflow causes a non-graceful exit.

Integers On most systems SWI-Prolog is compiled with support for unbounded integers by means of
the GNU GMP library. In practice this means that integers are bound by the global stack size.
Too large integers cause a resource_error. On systems that lack GMP, integers are 64-bit
on 32 as well as 64-bit machines.

Integers up to the value of the max_tagged_integer Prolog flag are represented more effi-
ciently on the stack. For clauses and records the difference is much smaller.

Floating point numbers Floating point numbers are represented as C-native double precision floats,
64 bit IEEE on most machines.

2.18.3 Reserved Names

The boot compiler (see —b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [] all predicates, database keys, etc. that
should be hidden from the user start with a dollar ($) sign (see style_check/1).

2.19 SWI-Prolog and 64-bit machines

SWI-Prolog support for 64-bit'’ machines started with version 2.8 on DEC Alpha CPUs running
Linux. Initially 64-bit hardware was developed to deal with the addressing demands of large
databases, running primarily on expensive server hardware. Recently (2007) we see CPUs that support
64-bit addressing become commonplace, even in low-budget desktop hardware. Most todays 64-bit
platforms are capable of running both 32-bit and 64-bit applications. This asks for some clarifications
on the advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.

2.19.1 Supported platforms

On Unix systems, 64-bit addressing is configured using configure. Traditionally, both 1ong and
void~* are 64-bits on these machines. Version 5.6.26 introduces support for 64-bit MS-Windows
(Windows XP and Vista 64-bit editions) on amd64 (x64) hardware. Win64 uses long integers of
only 32-bits. Version 5.6.26 introduces support for such platforms.

1With 64-bit machines we refer to CPUs where memory-addresses (pointers) are 64-bits wide.

SWI-Prolog 5.6 Reference Manual

2.19. SWI-PROLOG AND 64-BIT MACHINES 55

2.19.2 Comparing 32- and 64-bits Prolog

Most of Prolog’s memory-usage consists of pointers. This indicates the primary drawback: Prolog
memory usage almost doubles when using the 64 bit addressing model. Using more memory means
copying more data between CPU and main memory, slowing down the system.

What than are the advantages? First of all, SWI-Prolog’s addressing of the Prolog stacks does not
cover the whole address space due to the use of type tag bits and garbage collection flags. On 32-bit
hardware the stacks are limited to 128MB each. This tends to be too low for demanding applications
on modern hardware. On 64-bit hardware the limit is 23? times higher, exceeding the addressing
capabilities of todays CPUs and operating systems. This implies Prolog can be started with stacks
sizes that use the full capabilities of your hardware.

Multi-threaded applications profit much more. SWI-Prolog threads claim the full stacksize limit
in virtual address space and each thread comes with its own set of stacks. This approach quickly
exhaust virtual memory on 32-bit systems but poses no problems when using 64-bit addresses.

The implications theoretical performance loss due to increased memory bandwidth implied by
exchanging wider pointers depend on the design of the hardware. We only have data for the popular
IA32 vs. AMDG64 architectures. Here is appears that the loss is compensated for by a an instruction
set that has been optimized for modern programming. In particular, the AMD64 has more registers
and the relative addressing capabilities have been improved. Where we see a 10% performance degra-
dation when placing the SWI-Prolog kernel in a Unix shared object, we cannot find a measurable
difference on AMDG64. Current SWI-Prolog (5.6.26) runs at practically the same speed on IA32 and
AMD64.

2.19.3 Choosing between 32- and 64-bits Prolog

For those cases where we can choose between 32- and 64-bits, either because the hardware and OS
support both or because we can still choose the hardware and OS, we give guidelines for this decision.

First of all, if SWI-Prolog needs to be linked against 32- or 64-bit native libraries, there is no
choice as it is not possible to link 32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to use either the different characteristics
of Prolog become important.

Prolog applications that require more than the 128 MB stack limit provided in 32-bit addressing
mode must use the 64-bit edition. Note however that the limits must be doubled to accommodate the
same Prolog application.

If the system is tight on physical memory, 32-bit Prolog has the clear advantage to use only slightly
more than half of the memory of 64-bit Prolog. This argument applies as long as the application fits
in the virtual address space of the machine. The virtual address space of 32-bit hardware is 4GB,
but in many cases the operating system provides less to user applications. Virtual memory usage of
SWI-Prolog is roughly the program size (heap) plus the sum of the stack-limits. If there are multiple
threads, each thread has its own stacks and the stack-limits must be summed over the running threads.

The only standard SWI-Prolog library adding significantly to this calculation is the RDF database
provided by the semweb package. It uses approximately 80 bytes per triple on 32-bit hardware and
150 bytes on 64-bit hardware. Details depend on how many different resources and literals appear in
the dataset as well as desired additional literal indexes.

Summarizing, if applications are small enough to fit comfortably in virtual and physical memory
simply take the model used by most of the applications on the OS. If applications require more than
128MB per stack, use the 64-bit edition. If applications approach the size of physical memory, fit

SWI-Prolog 5.6 Reference Manual

56 CHAPTER 2. OVERVIEW

in the 128MB stack limit and fit in virtual memory, the 32-bit version has clear advantages. For
demanding applications on 64-bit hardware with more than about 6GB physical memory the 64-bit
model is the model of choice.

SWI-Prolog 5.6 Reference Manual

Initialising and Managing a
Prolog Project

Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter wants to explain how to run a project.
There is no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and
SWI-Prolog’s commands are there to support this practice. This chapter describes the conventions
and supporting commands.

The first two sections (section 3.1 and section 3.2 only require plain Prolog. The remainder dis-
cusses the use of the built-in graphical tools that require the XPCE graphical library installed on your
system.

3.1 The project source-files

Organisation of source-files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
work with one directory holding a couple of files and some files to link it all together. Even bigger
projects will be organised in sub-projects each using their own directory.

3.1.1 File Names and Locations
File Name Extensions

The first consideration is what extension to use for the source-files. Tradition calls for .p1, but con-
flicts with Perl force the use of another extension on systems where extensions have global meaning,
such as MS-Windows. On such systems .pro is the common alternative.'

All versions of SWI-Prolog load files with the extension .p1 as well as with the registered alter-
native extension without explicitly specifying the extension. For portability reasons we propose the
following convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .p1.

With a conflict choose . pro and use this extension for the files you want to load through your file-
manager. Use . pl for all other files for maximal portability.
Project Directories

Large projects are generally composed of sub-projects, each using their own directory or directory-
structure. If nobody else will ever touch your files and you use only one computer there is little to

'0n MS-Windows, the alternative extension is stored in the registry-key
HKEY_CURRENT_USER/Software/SWI/Prolog/fileExtensionor HKEY_.LOCAL MACHINE/Software/SWI/Prolog/fileExte:

SWI-Prolog 5.6 Reference Manual

58 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

worry about, but this is rarely the case with a large project.

To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses
the forward slash (/) to separate directories. Just before hitting the file-system it uses
prolog_to_os_filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog_to_os_filename/2 to convert computed paths into system-
paths when constructing commands for shel1/1 and friends.

Sub-projects using search-paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file_search_path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph-algorithms, set-operations and GUI-
primitives. These sub-projects are likely candidates for re-use in future projects. A good choice is
to create a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory-hierarchy of the
current project. Another is to use a completely dislocated directory and finally the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file_search _path/2 is:

:— prolog_load_context (directory, Dir),
asserta(user:file_search_path (myapp, Dir)).

user:file_search_path (graph, myapp (graph)) .
user:file_search_path (ui, myapp (ui)) .

For using sub-projects in the SWI-Prolog hierarchy one should use the path-alias swi as basis. For a
system-wide installation use an absolute-path.

Extensive sub-projects with a small well-defined API should define a load-file using
use_module/1 calls to import the various library-components and export the API.

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved-state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file-extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list.

e Joad.pl
Use this file to set up the environment (Prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command-line options
and start the application.

e run.pl
Use this file to start the application. Normally it loads 1oad.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 5.6 Reference Manual

3.2. USING MODULES 59

e save.pl
Use this file to create a saved-state of the application by loading load.pl and call
gsave_program/2 to generate a saved-state with the proper options.

e debug.pl
Loads the program for debugging. In addition to loading 1oad.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.17, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This sections discusses the
options for source-files not in US-ASCII.

SWI-Prolog can read files in any of the encodings described in section 2.17. Two encodings are of
particular interest. The t ext encoding deals with the current locale, the default used by this computer
for representing text files. The encodings ut £8, unicode_le and unicode_be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source-file there are several
options:

e Use escape sequences
This approach describes NON-ASCII as sequences of the form \octa/\. The numerical argu-
ment is interpreted as a UNICODE character.” The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

e Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine this
machine must be using the same locale or the file is unreadable. There is no elegant if files
from multiple locales must be united in one application using this technique. In other words, it
is fine for local projects in countries with uniform locale conventions.

o Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use
of UTF-8 encoding. Prolog can be notified two ways of this encoding, using a UTF-8 BOM
(see section 2.17.1) or using the directive : = encoding (ut £8) .. Many todays text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that started using local con-
ventions can be be re-coded using the Unix i conv tool or often using a commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because

>To my knowledge, the ISO escape sequences is limited to 3 octal digits, which means most characters cannot be
represented.

SWI-Prolog 5.6 Reference Manual

60 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

o They hide local predicates
This is the reason they have been invented in the first place. Hiding provides two features.
They allow for short predicate names without worrying about conflicts. Given the flat name-
space introduced by modules, they still require meaningful module names as well as meaningful
names for exported predicates.

e They document the interface
Possibly more important then avoiding name-conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume
you can reorganise anything but the name and semantics of the exported predicates without
worrying.

o They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module good understanding of resolution of terms to predi-
cates inside a module is required. Here is a typical example from readutil.

:— module (read_util,

[read_line_to_codes/2,
read_line_to_codes/3,
read_stream to_codes/2,
read_stream to_codes/3,
read_file to_codes/3,
read_file to_terms/3

1)

+Fd, -Codes

+Fd, —-Codes, ?Tail

+Fd, -—-Codes

+Fd, —-Codes, ?Tail
+File, -Codes, +Options
+File, -Terms, +Options

o o o0 o0 oo o°

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing down Prolog source code.
Editors are complicated programs that must be mastered in detail for real productive programming
and if you are familiar with a specific editor you should not be forced to change. You may specify
your favourite editor using the Prolog flag editor, the environment variable EDI TOR or by defining
rules for prolog_edit:edit_source/1 (see section 4.4).

The use of a built-in editor, which is selected by setting the Prolog flag editor to pce_emacs,
has advantages. The XPCE editor object around which the built-in PceEmacs is built can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit /1, an extensible front-end that searches for
objects (files, predicates, modules as well as XPCE classes and methods) in the Prolog database. If
multiple matches are found it provides a choice. Together with the built-in completion on atoms bound
to the TAB key this provides a quick way to edit objects:

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 61

?— edit (country) .
Please select item to edit:

1 chat:country/10 " /staff/jan/lib/prolog/chat/countr.pl’ :16
2 chat:country/1 "/staff/jan/lib/prolog/chat/world0.pl’ :72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do retry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one normally aborts after
understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/O0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. After the tracer reveals there is something wrong with prove/ 3, you do:

?— edit (prove) .

Now edit the source, possibly switching to other files and making multiple changes. After finishing
invoke make /0, either through the editor UI (Compile/Make (Control-C Control-M)) or on
the top-level and watch the files being reloaded.’

?— make.

[}

% show compiled into photo_gallery 0.03 sec, 3,360 bytes

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit /1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the Prolog flag editor to pce_emacs and the
other is by starting the editor explicitly using the emacs/ [0, 1] predicates.

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.*

3Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

“Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 5.6 Reference Manual

62 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu-bar above
each editor window. A complete overview of the bindings for the current mode is provided through
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source-)text. For our purpose we want Prolog mode. Their are various ways to make PceEmacs use
Prolog mode for a file.

e Using the proper extension
If the file ends in . p1 or the selected alternative (e.g. . pro) extension, Prolog mode is selected.

e Using #!/path/to/pl
If the file is a Prolog Script file, starting with the line # ! /path/to/pl options -s, Pro-
log mode is selected regardless of the extension

o Using —x— Prolog —x-—
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

e Explicit selection
Finally, using File/Mode/Prolog (y)ou can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

e Cut/Copy/Paste

These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle mouse-button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps
there is the Edit/Paste menu-entry. Text is pasted at the caret-location.

e Undo
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows Control-Z sequence.

e Abort
Multi-key sequences can be aborted at any stage using Control-G.

e Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start-keys the system indicates search mode in the status line.
As you are typing the search-string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 63

If the target cannot be found, PceEmacs warns you and no longer extends the search-string.’
During search some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search for next forwards.

Control-R
Search for next backwards.

Control-W
Extend search to next word-boundary.

Control-G
Cancel search, go back to where it started.

ESC

Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

e Dynamic Abbreviation
Also called dabbrev is an important feature of Emacs clones to support programming. After
typing the first few letters of an identifier you may hit Alt-/, causing PceEmacs to search back-
wards for identifiers that start the same and using it to complete the text you typed. A second
Alt-/ searches further backwards. If there are no hits before the caret it starts searching forwards.
With some practice, this system allows for very fast entering code with nice and readable iden-
tifiers (or other difficult long words).

e Open (a file)
Is called File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, Hit Alt-s or click the little icon at the bottom-
left to make the window sticky.

o Split view
Sometimes you want to look at two places of the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These were the most commonly used commands. In section section 3.4.3 we discuss specific
support for dealing with Prolog source code.

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

SGNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 5.6 Reference Manual

64 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Clauses
Blue bold | Head of an exported predicate
Red bold Head of a predicate that is not called
Black Bold | Head of remaining predicates
Calls in the clause-body

Blue Call to built-in or imported predicate
Red Call to not-defined predicate
Purple Call to dynamic predicate

Other entities
Dark green | Comment

Dark blue | Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

o After typing a .
After typing a . that is not preceded by a symbol character the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

e After the command Control-c Control-s
Acronym for Ccheck Syntax it performs the same checks as above for the clause surrounding
the caret. On a syntax error however, the caret is moved to the expected location of the error.’

e After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit-buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

e After typing Control-1 Control-|
The Control-l commands re-centers the window (scrolls the window to make the caret the center
of the window). Hitting this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog_colour. The colouring can be extended
and modified using multifile predicates. Please check this source-file for details. In general, under-
lined objects have a popup (right-mouse button) associated for common commands such as viewing
the documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project supports only one
particular style for layout.” Below are examples of typical constructs.

®In most cases the location where the parser cannot proceed is further down the file than the actual error-location.
"Defined in Prolog in the file emacs/prolog.mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 65

head (argl, arg2).
head (argl, arg2) :— !.

head (Argl, arg2) :— !,
calll (Argl) .

head (Argl, arg2?2) :-
(if (Argl)
-> then
; else

) .

head (Argl) :-

a (many,
long,
arguments (with,
many,
more),
and ([a,
long,
list,
with,
a,
| tail
).

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument-lists broken across multiple lines as illustrated
above.

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit /1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use_module/ [1, 2], consult /1, etc. are red if the file can-

not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

SWI-Prolog 5.6 Reference Manual

66 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text-console based 4-port Prolog tracer and
the other is a window-based source-level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog_trace_interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides much better overview due to the eminent relation to your source-
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice-point stack. There are some drawbacks though. Using a textual trace on the console one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific location in the source-code.

The graphical tracer is particulary useful for debugging threads. The tracer must be loaded from
the main thread before it can be used from a background thread.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through trace/0, by hitting a spy-point defined by spy/1 or a break-point defined using
PceEmacs command Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer /0, reverting to normal text-console based tracing.

gtrace
Utility defined as guitracer, trace.

gdebug
Utility defined as guitracer, debug.

gspy(+Predicate)
Utility defined as guitracer, spy (Predicate).
3.6 The Prolog Navigator
Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command

Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

SWI-Prolog 5.6 Reference Manual

3.7. CROSS REFERENCER

67

s4 Prolog XREF._

File View

Files } Prad\cates]

E-{g&nlem

—E] pirc
H&# agareg.pl
border.pl
—Q] chat.pl
—a‘ chatops.pl
—E] chatiop.pi}
—a‘ cities.pl
@ clotab.pl

—a‘ contai.pl

—a‘ ptree.pl
& aplan.pl
~a‘ readin.pl
—a‘ rivers.pl
—E] scopes.pl
~ E] slots.pl
FB takrpl
—a‘ templa.pl
—E] world 0.pl

—a‘ xgrun.pl
£

® library
®) library
®) pce_boot
ad swi

-

Dependencies I File info]

chattop.pl

Modified:

Tue Dec 2 16:10:31 2008

Called by

display/1

check_word/2, control/1, failure/0

otherwise/l

show_results3

pPp_quant/’2

report_item/2

timen

test0

wersion/0

runtime_entry/1

Nof called

runtime_entry/1

test/0

Used by

hil0

chat.pl (13

test_chat/0

plrec (1)

quote/1

ptree.pl (1)

From

newdic.pl

word/1

newg.pl

sentence’S

ptree.pl

print_tree

qplan.pl

qplan/2

readin.pl

read_in/1

scopes.pl

clausify/2

slots.pl

i_sentence/2

talkr.pl
¥

answer/1, holds/2, seto3, write_tree

(33 user_profile Ad
| Undefined predicate version/0

Figure 3.1: File info for chattop.pl, part of CHAT80

3.7 Cross referencer

A cross-referencers is a tool examining the caller-callee relation between predicates and using this
information to explicate dependency relations between source files, find calls to non-existing predi-
cates and predicates for which no callers can be found. Cross-referencing is useful during program
development, reorganisation, cleanup, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically call/1 after con-
struction of a goal term. Abtract interpretation can find some of such calls, but the ultimately they
can come from external communication, making it completely impossible to predict the callee. In
other words, the cross-referencer has only partial understanding of the program and its results are
necessarily incomplete. Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog_xref
is an extensible library for information gathering described in section A.18 and the XPCE

library pce_xref provides a graphical frontend for the cross-referencer described here. We
demonstrate the tool on CHATS8O0, a natural language question and answer system by Fernando C.N.
Pereira and David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1 provides browsers for loaded files and predicates. To avoid
long file paths the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias and below it are the file-search-path aliases (see

SWI-Prolog 5.6 Reference Manual

68 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

s4 Prolog XREF._
File View

Files WPrad\cates] - Dependenciesl F\Ieimo]

E-{g&nlem

readin.pl ’
FB pirc chat.pl
H&# agareg.pl
—a‘ border.pl

—Q] chat.pl

—a‘ chatops.pl
M chatiop.pl piree.pl

—a‘ cities.pl

@ clotab.pl

—a‘ contai.pl hatiop.pl
H&# countr.pl il

—a‘ ptree.pl
| & apian pi slois.pl
& readin.pl qplan.pl

—a‘ rivers.pl
—E] scopes.pl 4 nd3 Definition
~ E] slots.pl ndial
FB takrpl

>

nd/d cost’5

rid0.pl

—a‘ templa.pl nd/5 - niai.pl
—E] world0.pl
—a‘ xgrun.pl I
{9 alias e

cifies.pl

3 library
®) library T
®) pce_boot ‘
& oni | rivers.pl

[¥) user_profile | [4] [»]

border.pl

Figure 3.2: Dependencies between source files of CHATS80

file_search_path/2 and absolute_file_name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using file search path. All loaded
files that fall outside these categories are below the last branch called /. File where the system found
suspicious dependencies are marked with an exclamation mark. This also holds for directories holding
such files. Clicking on a file opens a File info window in the right pane.

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import- and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allows to edit the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the menu-command Header the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

SWI-Prolog 5.6 Reference Manual

3.8. ACCESSING THE IDE FROM YOUR PROGRAM 69

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

Warn not called
If enabled (default), the file-overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with their own interface.
In addition, some of these components require each other and loading IDE components must be on
demand to avoid the IDE being part of a saved-state (see gsave_program/2). For this reason,
access to the IDE will be concentrated on a single interface called prolog_ide/1:

prolog_ide(+Action)
This predicate ensures the IDE enabling XPCE component is loaded, cre-
ates the XPCE class prolog_ide and sends Action to its one and only instance
\index{@prolog_ide}\objectname{prolog_ide}. Action is one of the fol-
lowing:

open_navigator(+Directory)
Open the Prolog Navigator (see section 3.6) in the given Directory.

open_debug_status
Open a window to edit spy- and trace-points.

open_query_window
Opens a little window to run Prolog queries from a GUI component.

thread_monitor
Open a graphical window indicating existing threads and their status.

debug_monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

3.9 Summary of the iDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated
tools. Here is a list of the most important features and tips.

e Atom completion
The console® completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

80n Windows this is realised by plwin.exe, on Unix through the GNU readline library, which is included automatically
when found by configure.

SWI-Prolog 5.6 Reference Manual

70

CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Use edit /1 to finding locations
The command edit /1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the users preferred editor at the right location.

Select editor
External editors are selected using the EDITOR environment variable, by setting the Prolog flag
editor or by defining the hook prolog_edit:edit_source/1.

Update Prolog after editing
Using make/ 0, all files you have edited are re-loaded.

PceEmacs
Offers syntax-highlighting and checking based on real-time parsing of the editor’s buffer,
layout-support and navigation support.

Using the graphical debugger

The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu-
items from PceEmacs or the PrologNavigator.

The Prolog Navigator
Shows the file-structure and structure inside the file. It allows for loading files, editing, setting
spy-points, etc.

SWI-Prolog 5.6 Reference Manual

Built-in predicates

4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a mode indicator
There is no complete agreement on mode indicators in the Prolog community. We use the following
definitions:'

+ Argument must be fully instantiated to a term that satisfies the required
argument type. Think of the argument as input.

- Argument must be unbound. Think of the argument as output.

?7 Argument must be bound to a partial term of the indicated type.
Note that a variable is a partial term for any type. Think of
the argument as either input or output or both input and out-
put. E.g. In stream property (S, reposition (Bool)), the
reposition part of the term is input and the uninstantiated Bool is
output.

Argument is a meta-argument. Implies +. See section 5 for more infor-
mation on module-handing.

@ Argument is not further instantiated. Typically used for type-tests.

Argument contains a mutable structure that may be modified using

setarg/3 ornb_setarg/3.

Referring to a predicate in running text is done using a predicate indicator. The canonical and
most generic form of a predicate indicator is a term (module):(name)/{arity). If the module is irrele-
vant (built-in predicate) or can be inferred from the context it is often omitted. Compliant to the ISO
standard draft on DCG (see section 4.12), SWI-Prolog also allows for [(module)]:(name)/l{arity) to
refer to a grammar rule. For all non-negative arity, (name)//(arity) is the same as (name)/;arity+2;,
regardless on whether or not the referenced predicate is defined or can be used as a grammar rule. The
//-notation can be used in all places that traditionally allow for a predicate indicator, e.g. the module
declaration, spy/1, and dynamic/1.

4.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented using character-codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,

!These definitions are taken from PIDoc. The current manual has only one mode declaration per predicate and therefore
predicates with mode (+,-) and (-,+) are described as (?,?). The @-mode is often replaced by +.

SWI-Prolog 5.6 Reference Manual

72 CHAPTER 4. BUILT-IN PREDICATES

of which iso-latin-1 (ISO 8859-1) is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

e code
A character-code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

e char
Alternatively, characters may be represented as one-character-atoms. This is a very natural rep-
resentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

e byte
Bytes are used for accessing binary-streams.

The current version of SWI-Prolog does not provide support for multi-byte character encoding.
This implies for example that it is not capable of breaking a multi-byte encoded atom into characters.
For SWI-Prolog, bytes and codes are the same and one-character-atoms are simple atoms containing
one byte.

To ease the pain of these multiple representations, SWI-Prolog’s built-in predicates dealing with
character-data work as flexible as possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments that are instantiated, the character
is extracted before unification. This implies that the following two calls are identical, both testing
whether the next input characters is an a.

peek_code (Stream, a).
peek_code (Stream, 97).

These multiple-representations are handled by a large number of built-in predicates, all of which are
ISO-compatible. For converting between code and character there is char_code/2. For breaking
atoms and numbers into characters are are atom_chars/2, atom_codes/2, number_codes/2
and number_chars/2. For character I/O on streams there is get_char/[1, 2],
get_code/[1,2], get byte/[1,2], peek_char/[1,2], peek_code/[1,2],
peek byte/[1,2], put_code/[1,2], put_char/[1,2] and put_byte/[1,2]. The
Prolog flag double_quotes controls how text between double-quotes is interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains Prolog clauses and directives, but no module-declaration.
They are normally loaded using consult/1 or ensure_loaded/1.

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 73

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only the public predicates are made available to the context load-
ing the module. Module files are normally loaded using use module/ [1, 2]. See chapter 5
for details.

An include Prolog source file is loaded using the include/1 directive and normally contains only
directives.

Prolog source-files are located using absolute_file_name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_ name (Spec,
[file_type(prolog),
access (read)

1,
Path) .

The file type(prolog) option is used to determine the extension of the file using
prolog_file type/2. The default extension is .pl. Spec allows for the path-alias
construct defined by absolute_file name/3. The most commonly used path-alias is
library(LibraryFile). The example below loads the library file ordsets.pl (containing predi-
cates for manipulating ordered sets).

:— use_module (library (ordsets)) .

SWI-Prolog recognises grammar rules (DCG) as defined in []. The
user may define additional compilation of the source file by defining the dynamic predicates
term expansion/2 and goal_expansion/2. Transformations by term expansion/2
overrule the systems grammar rule transformations. It is not allowed to use assert /1, retract/1
or any other database predicate in term_expansion/2 other than for local computational pur-
poses.”

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separate reconsult /1 predicate. Reconsulting is implied auto-

matically by the fact that a file is consulted which is already loaded.

load _files(+Files, +Options)
The predicate 1load_files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load files/2.
Files is either a single source-file, or a list of source-files. The specification for a source-file
is handed to absolute_file_name/2. See this predicate for the supported expansions.
Options is a list of options using the format

OptionName(OptionValue)

The following options are currently supported:

21t does work for normal loading, but not for gcompile/1.

SWI-Prolog 5.6 Reference Manual

74

CHAPTER 4. BUILT-IN PREDICATES

autoload(Bool)
If true (default false), indicate this load is a demand load. This implies that, de-
pending on the setting of the Prolog flag verbose_autoload the load-action is
printed at level informational or silent. See also print message/2 and
current_prolog_flag/2.

derived_from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and
load the original file rather than the derived file.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the Prolog flag
encoding. See section 2.17.1 for details.

expand(Bool)
If t rue, run the filenames through expand_file_name/2 and load the returned files.
Defaultis false, except for consult /1 which is intended for interactive use. Flexible
location of files is defined by file_search_path/2.

format(+Format)
Used to specify the file format if data is loaded from a stream using the st ream(Stream)
option. Default is source, loading Prolog source text. If glf, load QLF data (see
gcompile/1).

if(Condition)
Load the file only if the specified condition is satisfied. The value t rue loads the file
unconditionally, changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time, not _1oaded loads the file if it was not loaded before.

imports(/mport)
Specify what to import from the loaded module. The default for use module/lisall.
Import is passed from the second argument of use_module/2. Traditionally it is a list
of predicate indicators to import. As part of the SWI-Prolog/YAP integration, we also
support Pred as Name to import a predicate under another name. Finally, Import can be a
term except(Exceptions), where Exceptions is a list of predicate indicators that specify
predicates that are not imported or Pred as Name terms to denote renamed predicates.
See also reexport /2 and use_module/2.}

must_be_module(Bool)
If t rue, raise an error if the file is not a module file. Used by use_module/[1, 2].
gqcompile(Bool)
If this call appears in a directive of a file that is compiled into Quick Load Format using
gcompile/1 and this flag is t rue, the contents of the argument files are included in
the . g1f£ file instead of the loading directive.
reexport(Bool)
If t rue re-export the imported predicate. Used by reexport /1 and reexport/2.
silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the Prolog flag
verbose_load with the negation of Bool.

SBUG: NamelArity as NewName is currently implemented using a link clause. This harms efficiency and does not allow

for querying the relation through predicate_property/2.

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 75

stream(/nput)
This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source-location of the
loaded clauses as well as remove all clauses if the data is re-consulted.

This option is added to allow compiling from non-file locations such as databases, the

web, the user (see consult /1) or other servers. It can be combined with format(qglf)
to load QLF data from a stream.

The load_files/2 predicate can be hooked to load other data or data from other objects than
files. See prolog_load_file/2 for a description and http_load for an example.

consult(+File)
Read File as a Prolog source file. File may be a list of files, in which case all members are
consulted in turn. File may start with the Unix shell special sequences ~, (user) and $(var).

File may also be 1ibrary (Name), in which case the libraries are searched for a file with
the specified name. See also library.directory/1 and file_search_path/2.
consult/1 may be abbreviated by just typing a number of file names in a list. Examples:

?— consult (load) . % consult 1oad or load.pl
?—- [library (quintus)]. % load Quintus compatibility library
?— [user].

The predicate consult/1 is equivalent to load_files(Files, []), except for handling the spe-
cial file user, which reads clauses from the terminal. See also the st ream(/nput) option of
load_files/2.

ensure_loaded(+File)
If the file is not already loaded, this is equivalent to consult /1. Otherwise, if the file defines
a module, import all public predicates. Finally, if the file is already loaded, is not a module
file and the context module is not the global user module, ensure_loaded/1 will call
consult/1.

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use_module/[1,2].

Equivalent to load_files(Files, [if(not_loaded)]).*

include(+File)
Pretend the terms in File are in the source-file in which : - include (File) appears. The
include construct is only honoured if it appears as a directive in a source-file. Normally File
contains a sequence of directives.

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for

“On older versions the condition used to be if(changed). Poor time management on some machines or due to copying
often caused problems. The make /0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 5.6 Reference Manual

76

CHAPTER 4. BUILT-IN PREDICATES

XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, does not load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 and autoload/0.

encoding(+Encoding)

make

This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.17.1.

Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using p1 —-c ... and files loaded using
consult or one of its derivatives. The predicate make /0 is called after edit /1, automatically
reloading all modified files. If the user uses an external editor (in a separate window), make /0
is normally used to update the program after editing. In addition, make /0 updates the autoload
indices (see section 2.13) and runs 1ist_undefined/0 from the check library to report
on undefined predicates.

library_directory(?Atom)

Dynamic predicate used to specify library directories. Default . /1ib, “/1ib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1,asserta/1 or remove system defaults using retract /1.

file_search_path(+Alias, ?Path)

Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specification demo (myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file_search_path/2 may be another alias.

Below is the initial definition of the file search path. This path implies swi ((Path)) refers to
a file in the SWI-Prolog home directory. The alias foreign ((Path)) is intended for storing
shared libraries (. so or .DLL files). See also 1oad_foreign_library/[1,2].

user:file_search_path(library, X) :-
library_directory (X) .
user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).
user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat ("1ib/’, Arch, ArchLib).
user:file_search_path(foreign, swi(lib)).

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 77

The file_search_path/2 expansion is used by all loading predicates as well as by
absolute_file_name/[2, 3].

The Prolog flag verbose_file_search can be set to true to help debugging Prolog’s
search for files.

expand._file_search_path(+Spec, -Path)
Unifies Path with all possible expansions of the file name specification Spec. See also
absolute_file_name/3.

prolog_file_type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file_search_path/2. Extension is the filename extension without the leading dot, Type
denotes the type as used by the file_type(Type) option of file search path/2. Here
is the initial definition of prolog_file_type/2:

user:prolog_file_type (pl, prolog) .

user:prolog_file_type (Ext, prolog) :-
current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file type(qlf, glf).

user:prolog_file_type (Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example with perl) as well as to be compatible with some specific implementation. The
preferred alternative extension is . pro.

source_file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source-
file.

source_file(?Pred, ?File)
Is true if the predicate specified by Pred was loaded from file File, where File is an absolute path
name (see absolute_file name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. See also clause_property/2.

prolog_load_context(?Key, ?Value)
Obtain context information during compilation. This predicate can be used from direc-
tives appearing in a source file to get information about the file being loaded. See also
source_location/2. The following keys are defined:

SWI-Prolog 5.6 Reference Manual

78 CHAPTER 4. BUILT-IN PREDICATES

Key Description

module Module into which file is loaded

source File loaded. Returns the original Prolog file when loading a . g1 £
file. Compatible to SICStus Prolog.

file Currently equivalent to source. In future versions it may report
a different values for files being loaded using include/1.

stream Stream identifier (see current_input/1)

directory Directory in which source lives.

dialect Compatibility mode. See expects_dialect/1.

term_position | Position of last term read. Term of the form
’$streamposition’ (0, (Line),0,0,0). See also
stream position_data/3.

source_location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the file user or a string),
unify File with an absolute path to the file and Line with the line-number in the file. New code
should use prolog_load_context/2.

at_initialization(+Goal)
Register Goal to be run when the system initialises. Initialisation takes place after reloading a
.qlf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issued if Goal fails, but execution continues. See
also at_halt/1

at_halt(+Goal)
Register Goal to be run from PL_cleanup(), which is called when the system halts. The hooks
are run in the reverse order they were registered (FIFO). Success or failure executing a hook is
ignored. If the hook raises an exception this is printed using print _message/2. An attempt
tocallhalt/ [0, 1] from a hook is ignored.

initialization(+Goal)
Call Goal and register it using at _initialization/1. Directives that do other things
than creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
gsave_program/[1,2].

compiling
True if the system is compiling source files with the —c option or gcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the —O option) or to omit execution of directives during
compilation.

4.3.1 Conditional compilation and program transformation

ISO Prolog defines no way for program transformations such as macro expansion or conditional com-
pilation. Expansion through term_expansion/2 and expand_term/2 can be seen as part of the
de-facto standard. This mechanism can do arbitrary translation between valid Prolog terms read from
the source file to Prolog terms handed to the compiler. As term_expansion/2 can return a list,
the transformation does not need to be term-to-term.

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 79

Various Prolog dialects provide the analogous goal_expansion/2 and expand._goal/2,
that allow for translation of individual body terms, freeing the user of the task to disassemble each
clause.

term_expansion(+7Terml, -Term?2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms
read during consulting are given to this predicate. If the predicate succeeds Prolog will assert
Term?2 in the database rather then the read term (7ermli). Term2 may be a term of the form ‘?-
Goal’ or “:- Goal’. Goal is then treated as a directive. If Term?2 is a list all terms of the list are
stored in the database or called (for directives). If Term2 is of the form below, the system will
assert Clause and record the indicated source-location with it.

" $source_location’ ((File), (Line)) :(Clause)

When compiling a module (see chapter 5 and the directive module/2), expand_term/2
will first try term_expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term, expand_term/2 will try term_expansion/2 in module user. For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.

expand_term(+7erml, -Term?2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
term_expansion/2. If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal_expansion(+Goall, -Goal2)
Like term_expansion/2, goal_expansion/2 provides for macro-expansion of Prolog
source-code. Between expand_term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand_goal/2, which uses the goal _expansion/?2
hook to do user-defined expansion.

The predicate goal_expansion/2 is first called in the module that is being compiled, and
then on the user module. If Goal is of the form Module:Goal where Module is instantiated,
goal_expansion/2 is called on Goal using rules from module Module followed by user.

Only goals appearing in the body of clauses when reading a source-file are expanded using
this mechanism, and only if they appear literally in the clause, or as an argument to the meta-
predicates not /1, call/1l, once/1, ignore/1, findall/3, bagof/3, setof/3 or
forall/2. Areal predicate definition is required to deal with dynamically constructed calls.

expand_goal(+Goall, -Goal2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal_expansion/2. If this fails it returns the first argument.

compile_aux_clauses(+Clauses)
Compile clauses on behalf of goal_expansion/2. This predicate compiled the argument
clauses into static predicates, associating the predicates with the current file but avoid changing
the notion of current predicate and therefore discontiguous warnings.

SWI-Prolog 5.6 Reference Manual

80 CHAPTER 4. BUILT-IN PREDICATES

preprocessor(-Old, +New)
Read the input file via an external process that acts as preprocessor. A preprocessor is specified
as an atom. The first occurrence of the string ‘3£’ is replaced by the name of the file to be
loaded. The standard output of resulting command is loaded. To use the Unix C preprocessor
one should define:

?—- preprocessor (01d, ’/lib/cpp -C -P %$f’), consult(...).

0ld = none

Using cpp for Prolog preprocessing is not ideal as the tokenization rules for comment and
quoted strings differ between C and Prolog. Another problem is availability and compatibility
with regard to option processing of cpp.

Conditional compilation

Conditional compilation builds on the same principle as term_expansion/2,
goal_expansion/2 and the expansion of grammar rules to compile sections of the source-
code conditionally. One of the reasons for introducing conditional compilation is to simplify writing
portable code. See section C for more information. Here is a simple example:

:— 1f (\+source_exports (library (lists), suffix/2)).

suffix (Suffix, List) :-—
append (_, Suffix, List).

:— endif.

Note that these directives can only appear as separate terms in the input. Typical usage scenarios
include:

e [oad different libraries on different dialects
e Define a predicate if it is missing as a system predicate
e Realise totally different implementations for a particular part of the code due to different capa-
bilities.
e Realise different configuration options for your software.
:- if(:Goal)
Compile subsequent code only if Goal succeeds. For enhanced portability, Goal is processed

by expand_goal/2 before execution. If an error occurs, the error is printed and processing
proceeds as if Goal has failed.

:- elif(:Goal)
Equivalent to :- else. :-if(Goal) ... :- endif. In a sequence as below, the section below the first
matching elif is processed, If no test succeeds the else branch is processed.

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 81

:— 1f (testl).
section_1.

:— elif (test2).
section_2.

:— elif (test3).
section_3.

:— else.
section_else.
:— endif.

:- else
Start ‘else’ branch.

:- endif
End of conditional compilation.

4.3.2 Loading files, active code and threads

Traditionally, Prolog environments allow for reloading files holding currently active code. In particu-
lar, the following sequence is valid use of the development environment:

e Trace a goal

o Find unexpected behaviour of a predicate

e Enter a break using the b command

e Fix the sources and reload them using make /0

o Exit the break, retry using the r command

Goals running during the reload keep running on the old definition, while new goals use the
reloaded definition, which is why the retry must be used after the reload. This implies that clauses
of predicates that are active during the reload cannot be reclaimed. Normally a small amount of
dead clauses should not be an issue during development. Such clauses can be reclaimed with
garbage_collect_clauses/0.

garbage_collect_clauses
Cleanup all dirty predicates, where dirty predicates are defined to be predicates that have both
old and new definitions due to reloading a source file while the predicate was active. Of course,
predicates that are active using garbage_collect_clauses/0 cannot be reclaimed
and remain dirty. Predicate are -like atoms- shared resources and therefore all threads are
suspended during the execution of this predicate.

Threads and reloading running code

As of version 5.5.30, there is basic thread-safety for reloading source files while other threads
are executing code defined in these source files. Reloading a file freezes all threads after mark-
ing the active predicates originating from the file being reloaded. The threads are resumed after

SWI-Prolog 5.6 Reference Manual

82 CHAPTER 4. BUILT-IN PREDICATES

the file has been loaded. In addition, after completing loading the outermost file, the system runs
garbage_collect_clauses/0.

What does that mean? Unfortunately it does notr mean we can ‘hot-swap’ modules. Consider the
case where thread A is executing the recursive predicate P. We ‘fix’ P and reload. The already run-
ning goals for P continue to run the old definition, but new recursive calls will use the new definition!
Many similar cases can be constructed with dependent predicates.

It provides some basic security for reloading files in multi-threaded applications during develop-
ment. In the above scenarios the system does not crash uncontrolled, but behaves like any broken
program: it may return the wrong bindings, wrong truth value or raise an exception.

Future versions may have an ‘update now’ facility. Such a facility can be implemented on top
of the logical update view. It would allow threads to do a controlled update between processing
independent jobs.

4.3.3 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load Files’ (. g1f file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using gcompile/1. They are loaded using consult/1 or one
of the other file-loading predicates described in section 4.3. If consult is given the explicit . p1 file,
it will load the Prolog source. When given the . glf file, it will load the file. When no extension is
specified, it will load the . g1 £ file when present and the . p1 file otherwise.

qcompile(+File)
Takes a single file specification like consult/1 (i.e., accepts constructs like
library (LibFile) and, in addition to the normal compilation, creates a Quick Load File
from File. The file-extension of this file is . g1 f. The base name of the Quick Load File is the
same as the input file.

3

If the file contains :— consult (+File)’, ‘1= [+File]’ or
:— load_files (+File, [gcompile (true), ...]) statements, the referred files are
compiled into the same . g1 £ file. Other directives will be stored in the . g1 £ file and executed
in the same fashion as when loading the . p1 file.

For term_expansion/2, the same rules as described in section 2.10 apply.
Conditional execution or optimisation may test the predicate compiling/0.

Source references (source_file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

4.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit /1 and consists of three parts:
locating, selecting and starting the editor.

SWI-Prolog 5.6 Reference Manual

4.4. LISTING AND EDITOR INTERFACE 83

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1) predicates defined in the module prolog_edit.
The built-in edit specifications for edit /1 (see prolog_edit:locate/3) are described below.

Fully specified objects
iModule;:(Name)/(Arity) | Refers a predicate
module((Module)) Refers to a module
file((Path)) Refers to a file
source_file({Path)) Refers to a loaded source-file
Ambiguous specifications
iName/(Arity) Refers this predicate in any module
iName,, Refers to (1) named predicate in any module with any ar-
ity, (2) a (source) file or (3) a module.

edit(+Specification)

edit

First exploits prolog_edit:locate/3 to translate Specification into a list of Locations. If there
is more than one ‘hit’, the user is asked to select from the locations found. Finally, pro-
log_edit:edit_source/1 is used to invoke the user’s preferred editor. Typically, edit /1 can be
handed the name of a predicate, module, basename of a file, XPCE class, XPCE method, etc.

Edit the ‘default’ file using edit /1. The default file is the file loaded with the command-line
option —s or, in windows, the file loaded by double-clicking from the Windows shell.

prolog_edit:locate(+Spec, -FullSpec, -Location)

Where Spec is the specification provided through edit /1. This multifile predicate is used
to enumerate locations at with an object satisfying the given Spec can be found. FullSpec is
unified with the complete specification for the object. This distinction is used to allow for
ambiguous specifications. For example, if Spec is an atom, which appears as the base-name
of a loaded file and as the name of a predicate, FullSpec will be bound to f£ile(Path) or
NamelArity.

Location is a list of attributes of the location. Normally, this list will contain the term
file(File) and —if available— the term 1ine(Line).

prolog_edit:locate(+Spec, -Location)

Same as prolog_edit:locate/3, but only deals with fully-specified objects.

prolog_edit:edit_source(+Location)

Start editor on Location. See prolog_edit:locate/3 for the format of a location term. This
multi-file predicate is normally not defined. If it succeeds, edit /1 assumes the editor is
started.

If it fails, edit /1 uses its internal defaults, which are defined by the Prolog flag editor
and/or the environment variable EDITOR. The following rules apply. If the Prolog flag
editor is of the format $ (name), the editor is determined by the environment variable (name).
Else, if this flagis pce_emacs or built_in and XPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environment EDITOR is set, this editor is used. Finally, vi is
used as default on Unix systems and notepad on Windows.

See the default user preferences file dot files/dotplrc for examples.

SWI-Prolog 5.6 Reference Manual

84 CHAPTER 4. BUILT-IN PREDICATES

prolog_edit:edit_command(+Editor, -Command)
Determines how Editor is to be invoked using shell/1. Editor is the determined editor (see
edit_source/1), without the full path specification, and without possible (exe) extension.
Command is an atom describing the command. The pattern % £ is replaced by the full file-name
of the location, and %d by the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the $f pattern, and one holding both
patterns.

The default contains definitions for vi, emacs, emacsclient, vim and notepad (latter
without line-number version).

Please contribute your specifications to jan@swi.psy.uva.nl.

prolog_edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load swi_edit, containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

:— multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded (library (swi_edit)) .

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus losing user’s layout and
variable name information. See also portray_clause/1.

listing
List all predicates of the database using 1isting/1.

portray_clause(+Clause)

Pretty print a clause. A clause should be specified as a term ‘(Head) :- (Body)’. Facts are
represented as ‘(Head) :— true’ orsimply (Head). Variables in the clause are written as A,
B, Singleton variables are written as _. See also portray_clause/2.

portray_clause(+Stream, +Clause)
Pretty print a clause to Stream. See portray_clause/1 for details.

4.5 Verify Type of a Term

var(+7erm) [1S0]
True if Term currently is a free variable.

nonvar(+7Term) [1S0]
True if Term currently is not a free variable.

integer(+7erm) [1S0]
True if Term is bound to an integer.

SWI-Prolog 5.6 Reference Manual

4.5. VERIFY TYPE OF A TERM 85

float(+Term) [1S0]
True if Term is bound to a floating point number.

rational(+7erm)
True if Term is bound to a rational number. Rational numbers include integers.

rational(+7erm, -Numerator, -Denominator)
True if Term is a rational number with given Numerator and Denominator. The Numerator and
Denominator are in canonical form, which means Denominator is a positive integer and there
are no common divisors between Numerator and Denominator.

number(+7erm) [1S0]
True if Term is bound to an integer or floating point number.’

atom(+Term) [150]
True if Term is bound to an atom.

string(+Term)
True if Term is bound to a string. Note that string here refers to the built-in atomic type string
as described in section 4.23, Text in double quotes such as "hello" creates a list of character
codes. We illustrate the issues in the example queries below.

?— write("hello").

(104, 101, 108, 108, 111]
?— string("hello").

No

?— i1s_list ("hello").

Yes

atomic(+7erm) [1S0]
True if Term is bound to an atom, string, integer or floating point number. Note that string
refers to the built-in type. See string/1. Strings in the classical Prolog sense are lists and
therefore compound.

compound(+7erm) [1S0]
True if Term is bound to a compound term. See also functor/3 and =../2.

callable(+7erm)
True if Term is bound to an atom or a compound term, so it can be handed without type-error
tocall/1l, functor/3 and =../2.

ground(+7Term)
True if Term holds no free variables.

cyclic_term(+7Term)
True if Term contains cycles, i.e. is an infinite term. See also acyclic_term/1 and sec-
tion 2.16.°

3 As rational numbers are not atomic in the current implementation and we do not want to break the rule that number /1
implies atomic/1, number/1 fails on rational numbers. This will change if rational numbers become atomic.

The predicates cyclic_term/1 and acyclic_term/1 are compatible to SICStus Prolog. Some Prolog systems
supporting cyclic terms use is_cyclic/1.

SWI-Prolog 5.6 Reference Manual

86 CHAPTER 4. BUILT-IN PREDICATES

acyclic_term(+7erm)
True if Term does not contain cycles, i.e. can be processed recursively in finite time. See also
cyclic_term/1 and section 2.16.

4.6 Comparison and Unification of Terms

Although unification is mostly done implicitely while matching the head of a predicate, it is also
provided by the predicate =/2.

+Terml = +Term?2 [1SO]
Unify Terml with Term2. True if the unification succeeds. For behaviour on cyclic terms see
the Prolog flag occurs_check. It acts as if defined by the following rule.

=(Term, Term).

+Terml \= +Term2 [1SO]
Equivalent to \+Terml = Term2. See also dif/2.

4.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables < Numbers < Atoms < Strings < Compound Terms’

2. Variables are sorted by address. Attaching attributes (see section 6.1) does not affect the order-
ing.

3. Atoms are compared alphabetically.
4. Strings are compared alphabetically.

5. Numbers are compared by value. Mixed integer/float are compared as floats. If the comparison
is equal, the float is considered the smaller value. If the Prolog flag i so is defined, all floating
point numbers precede all integers.

6. Compound terms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

+Terml == +Term?2 [1SO]
True if Terml is equivalent to Term2. A variable is only identical to a sharing variable.

+Terml \== +Term2 [1SO]
Equivalent to \+Terml == Term2.
+Terml @< +Term2 [1SO]

True if Terml is before Term?2 in the standard order of terms.

"Strings might be considered atoms in future versions. See also section 4.23

SWI-Prolog 5.6 Reference Manual

4.6. COMPARISON AND UNIFICATION OF TERMS 87

+Terml Q=< +Term?2 [1SO]
True if both terms are equal (==/2) or Terml is before Term?2 in the standard order of terms.

+Terml @> +Term2 [1SO]
True if Terml is after Term?2 in the standard order of terms.

+Terml @>= +Term2 [1SO]
True if both terms are equal (==/2) or Terml is after Term?2 in the standard order of terms.

compare(?Order, +Terml, +Term?2)
Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

4.6.2 Special unification and comparison predicates

This section describes special purpose variations on Prolog unification. The predicate
unify with_occurs_check/2 provides sound unification and is part of the ISO standard. The
predicates subsumes/2 and subsumes_chk/2 define ‘one-sided-unification’ and are found in
many Prolog systems. Finally, unifiable/3 is a ‘what-if” version of unification that is often qused
a building block in constraint reasoners.

unify_with_occurs_check(+7erml, +Term?2) [150]
As =/2, but using sound-unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two goals below:

1 ?- A= £(Ap).

A= f(E(E(EEEEEEEC.)))))I)I)I)))
2 ?— unify_with_occurs_check (A, f(A)).

No

Le. the first creates a cyclic-term, which is printed as an infinitely nested £/1 term (see the
max_depth option of write_term/2). The second executes logically sound unification and
thus fails. Note that the behaviour of unification through =/2 as well as implicit unification in
the head can be changed using the Prolog flag occurs_check.

+Terml =Q= +Term2
True if Terml is ‘structurally equal’ to Term2. Structural equivalence is weaker than equiva-
lence (==/2), but stronger than unification (=/2). Two terms are structurally equal if their tree
representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true
x(A,A) =Q@= x(B,C) false
X(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

SWI-Prolog 5.6 Reference Manual

88 CHAPTER 4. BUILT-IN PREDICATES

The predicates =@=/2 and \=@=/2 are cycle-safe. Attributed variables are considered struc-
turally equal iff their attributes are structurally equal. This predicate is known by the name
variant/2 in some other Prolog systems.

+Terml \=Q@= +Term2
Equivalentto ‘\+Terml =@= Term2’.

subsumes(+Generic, @Specific)
A term is told to subsume another term if instantiation in the generic term produces the specific
term. The subsumption relation is also called one sided unification or semi-unification. It
behaves as if defined by®

subsumes (General, Specific) :-—
term_variables (Specific, SVars),

General = Specific,
term_variables (SVars, SVars2),
SVars == SVars2.

subsumes_chk(+Generic, @Specific)
Equivalentto \+ \+ subsumes (Generic, Specific).

unifiable(@X, @Y, -Unifier)
If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required
to make X and Y equivalent.” This predicate can handle cyclic terms. Attributed variables are
handles as normal variables. Associated hooks are not executed.

?=(@Terml, @Term2)
Decide whether the equality of Terml and Term2 can be compared safely, i.e. whether the result
of Terml == Term2 can change due to further instantiation of either term. It is defined as
by ?=(A,B) :— (A==B ; A \= B), !.Seealsodif/2.

4.7 Control Predicates

The predicates of this section implement control structures. Normally the constructs in this section,
except for repeat /0, are translated by the compiler. Please note that complex goals passed as ar-
guments to meta-predicates such as findall/3 below cause the goal to be compiled to a temporary
location before execution. It is faster to define a sub-predicate (i.e. one_character_atom/1 in the
example below) and make a call to this simple predicate.

one_character_atoms (As) :-—
findall (A, (current_atom(A), atom_length (A, 1)), As).

8This implementation relies on the fact that term_variables/2 orders its variables based on depth-first left-to-right
traversal of the term.

°This predicate was introduced for the implementation of dif/2 and when/2 after discussion with Tom Schrijvers and
Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

SWI-Prolog 5.6 Reference Manual

4.7. CONTROL PREDICATES 89

fail [1S0]
Always fail. The predicate £ail/0 is translated into a single virtual machine instruction.

false
Same as fail, but the name has a more declarative conotation.

true [1S0]
Always succeed. The predicate t rue /0 is translated into a single virtual machine instruction.

repeat [1S0]
Always succeed, provide an infinite number of choice points.

! [1SO]
Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies
that the cut is transparent to ; /2, —>/2 and *—>/2. Cuts appearing in the condition part of
->/2 and »—>/2 as well as in \ +/1 are local to the condition.'’

tl :— (a, !, fail ; b). % cuts a/0 and t1/0
t2 :— (a -=> b, ! ; c). % cuts b/0 and t2/0
t3 :— call((a, !, fail ; b)). % cutsall
td4d :— \+(a, !, fail ; b). % cuts a/0
+Goall , +Goal2 [1SO]

Conjunction. True if both ‘Goall’ and ‘Goal2’ can be proved. It is defined as (this definition
does not lead to a loop as the second comma is handled by the compiler):

Goall, Goal2 :- Goall, Goal2.

+Goall ; +Goal2 [ISO]
The ‘or’ predicate is defined as:

Goall ; _Goal2 :- Goall.
_Goall ; Goal2 :- Goal2.

+Goall | +Goal2
Equivalent to ; /2. Retained for compatibility only. New code should use ; /2.

+Condition —> +Action [ISO]
If-then and If-Then-Else. The —>/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by ; /2), or by goals called by this
clause. Unlike ! /0, the choice-point of the predicate as a whole (due to multiple clauses) is
not destroyed. The combination ; /2 and —> /2 acts as if defines by:

If —> Then; _Else :— If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

1%Up to version 4.0.6, the sequence X=!, X acted as a true cut. This feature has been deleted for ISO compliance.

SWI-Prolog 5.6 Reference Manual

920 CHAPTER 4. BUILT-IN PREDICATES

Please note that (If —> Then) acts as (If —> Then ; fail), making the construct fail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

+Condition *—> +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Con-
dition succeeds at least once, the semantics is the same as (Condition, Action). If Condition
does not succeed, the semantics is that of (\+ Condition, Else). In other words, If Condition
succeeds at least once, simply behave as the conjunction of Condition and Action, otherwise
execute Else.

The construct A »—> B, i.e. without an Else branch, is translated as the normal conjunction A,
B.l 1

\+ +Goal [1S0]
True if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation in Prolog).

4.8 Meta-Call Predicates

Meta-call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(+Goal) [1SO]
Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
tocall/1.

call(+Goal, +ExtraArgl, ...)
Append ExtraArgl, ExtraArg2, ... tothe argument list of Goal and call the result. For example,
call(plus(1l), 2, X) willcall plus/3, binding X to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicates call/ [2—-6] are defined as true predicates, so they can be
handled by interpreted code.

apply(+7erm, +List)
Append the members of List to the arguments of Term and call the resulting term. For example:
apply (plus (1), [2, X]) will call plus (1, 2, X). apply/2 is incorporated in
the virtual machine of SWI-Prolog. This implies that the overhead can be compared to the
overhead of call/1. New code should use call/[2..] if the length of List is fixed, which is
more widely supported and faster because there is no need to build and examine the argument

list.
not(+Goal)
True if Goal cannot be proven. Retained for compatibility only. New code should use \+/1.
once(+Goal) [150]
Defined as:

""BUG: The decompiler implemented by clause/2 returns this construct as a normal conjunction too.

SWI-Prolog 5.6 Reference Manual

4.8. META-CALL PREDICATES 91

once (Goal) :-—-
Goal, !.

once/1 canin many cases be replaced with —> /2. The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :— once((b, c¢)), d.
2) a :— b, ¢ —> d.
ignore(+Goal)

Calls Goal as once/ 1, but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore (Goal) :-—
Goal, !.
ignore (_) .

call_with_depth _limit(+Goal, +Limit, -Result)

If Goal can be proven without recursion deeper than Limit levels,
callwith_depth_1limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth_limit _exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth-limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example, t rue/ 0 is translated into an inlined virtual machine
instruction. Also, repeat /0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-—-
repeat.

As aresult, call with depth_1imit/3 may still loop infinitely on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques like iterative deepening.
It was implemented after discussion with Steve Moyle smoyle@ermine.ox.ac.uk.

call_cleanup(:Goal, +Catcher, :Cleanup)
Calls Goal. If Goal is completely finished, either by deterministic success, failure, its choice-
point being cut or raising an exception and Catcher unifies to the termination code (see below),
Cleanup is called. Success or failure of Cleanup is ignored and possible choice-points it created
are destroyed (as once/1). If cleanup throws an exception this is executed as normal.'?

Catcher is unified with a term describing how the call has finished. If this unification fails,
Cleanup is not called.

2BUG: During the execution of Cleanup, garbage collection and stack-shifts are disabled.

SWI-Prolog 5.6 Reference Manual

92

CHAPTER 4. BUILT-IN PREDICATES

exit

Goal succeeded without leaving any choice-points.
fail

Goal failed.

Goal succeeded with choice-points and these are now discarded by the execution of a cut
(or other pruning of the search tree such as if-then-else).

exception(Exception)
Goal raised the given Exception.

Typical use of this predicate is cleanup of permanent data storage required to execute Goal,
close file-descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-—
open(File, read, In),
call_cleanup(term_in_stream(Term, In), _, close(In)).

term_in_stream(Term, In) :-—
repeat,
read (In, T),
(T == end_of file
-> !, fail
; T = Term

) .

Note that this predicate is impossible to implement in Prolog other then reading all terms into a
list, close the file and call member /2 because without call_cleanup/3 there is no way to
gain control if the choice-point left by repeat is killed by a cut.

The call_cleanup/2 can also be used to test determinism of a goal, providing a portable
alternative to deterministic/1:

?— call_cleanup ((X=1;X=2), Det=yes).

Det = yes ;

This predicate is a SWI-Prolog extension. See also call_cleanup/2 for compatibility to
other Prolog implementations.

call_cleanup(:Goal, :Cleanup)

This predicate is equivalent to call_cleanup(Goal, -, Cleanup), calling Cleanup regardless
of the reason for termination and without providing information. This predicate provides
compatibility to a number of other Prolog implementations.

SWI-Prolog 5.6 Reference Manual

4.9. I1ISO COMPLIANT EXCEPTION HANDLING 93

setup_and_call_cleanup(.Setup, :Goal, :Cleanup)
This predicate is introduced to allow for the proper definition of predicates with temporary
side-effects under asynchronous interrupts from call with time_limit /2 (package clib)
or thread_signal/2. It behaves as if defined below, but the Cleanup handler is also called
if the interrupt occurs between Setup and the call_cleanup/2 call.

setup_and_call_cleanup (Setup, Goal, Cleanup) :-
Setup,
call_cleanup(Goal, Cleanup).

4.9 1ISO compliant Exception handling

SWI-Prolog defines the predicates cat ch/3 and throw/ 1 for ISO compliant raising and catching of
exceptions. In the current implementation (4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger and fail, which was the normal
behaviour before the introduction of exceptions.

catch(:Goal, +Catcher, :Recover) [ISO]
Behaves as call/1 if no exception is raised when executing Goal. If a exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/1, all choice-points generated by Goal are cut, the system
backtracks to the start of catch/3 while preserving the thrown exception term and Recover
iscalled asin call/1.

The overhead of calling a goal through catch/3 is very comparable to call/1. Recovery
from an exception is much slower, especially if the exception-term is large due to the copying
thereof.

throw(+Exception) [1SO]
Raise an exception. The system looks for the innermost catch/ 3 ancestor for which Excep-
tion unifies with the Catcher argument of the catch/ 3 call. See catch/ 3 for details.

ISO demands throw/1 to make a copy of Exception, walk up the stack to a catch/3 call,
backtrack and try to unify the copy of Exception with Catcher. SWI-Prolog delays making a
copy of Exception and backtracking until it actually found a matching catch/3 goal. The
advantage is that we can start the debugger at the first possible location while preserving the
entire exception context if there is no matching catch/3 goal. This approach can lead to
different behaviour if Goal and Catcher of catch/3 call share variables. We assume this to
be highly unlikely and could not think of a scenario where this is useful.'

If an exception is raised in a callback from C (see chapter 9) and not caught in the same call-
back, PL _next_solution() fails and the exception context can be retrieved using PL_exception().

4.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an error
message, after which the predicate failed. If the Prolog flag debug_on_error was in effect (default),

11d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 5.6 Reference Manual

94 CHAPTER 4. BUILT-IN PREDICATES

the tracer was switched on. The combination of the error message and trace information is generally
sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
top-level will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e., a programming error) is lost. Therefore, if an exception is raised, which is not caught
using catch/ 3 and the top-level is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is no catch/ 3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the Prolog flag debug_on_error:

e current_prolog_flag(debug_on_error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL_exception(). This is the default.

e current_prolog_flag(debug_on_error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicate debug/0. The hook prolog_exception_hook/4 can be used to add
more debugging facilities to exceptions. An example is the library http/http_error, generating
a full stack trace on errors in the HTTP server library.

4.9.2 The exception term

Built-in predicates generates exceptions using a term error(Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context(Name/Arity, Message), where Name/Arity describes the built-in predicate that raised the
error, and Message provides an additional description of the error. Any part of this structure may be a
variable if no information was present.

4.9.3 Printing messages

The predicate print _message/2 may be used to print a message term in a human readable for-
mat. The other predicates from this section allow the user to refine and extend the message system.
The most common usage of print_message/2 is to print error messages from exceptions. The
code below prints errors encountered during the execution of Goal, without further propagating the
exception and without starting the debugger.

ey
catch (Goal, E,
(print_message (error, E),
fail

SWI-Prolog 5.6 Reference Manual

4.9. I1ISO COMPLIANT EXCEPTION HANDLING 95

Another common use is to defined message_hook/ 3 for printing messages that are normally silent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print_message(+Kind, +Term)
The predicate print message/2 is used to print messages, notably from exceptions in a
human-readable format. Kind is one of informational, banner, warning, error,
help or silent. A human-readable message is printed to the stream user_error.

If the Prolog flag verbose is silent, messages with Kind informational, or banner
are treated as silent. See —q.

This predicate first translates the Term into a list of ‘message lines’ (see
print_message_lines/3 for details). Next it will call the hook message_hook/3 to
allow the user intercepting the message. If message_hook/3 fails it will print the message
unless Kind is silent.

The print_message/2 predicate and its rules are in the file
(plhome) /boot /messages.pl, which may be inspected for more information on the
error messages and related error terms. If you need to report errors from your own predicates,
we advise you to stick to the existing error terms if you can; but should you need to invent new
ones, you can define corresponding error messages by asserting clauses for prolog:message.
You will need to declare the predicate as multifile.

See also message_to_string/2.

print_message lines(+Stream, +Prefix, +Lines)
Print a message (see print _message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

(Format)-(Args)
Where Format is an atom and Args is a list of format argument. Handed to format /3.
flush

If this appears as the last element, Stream is flushed (see £1lush_output/1) and no
final newline is generated.

at_same_line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (see format /1, "N).

(Format)
Handed to format/3 as format (Stream, Format, []).

nl
A new line is started and if the message is not complete the Prefix is printed too.

See also print message/2 and message_hook/3.

SWI-Prolog 5.6 Reference Manual

96 CHAPTER 4. BUILT-IN PREDICATES

message_hook(+Term, +Kind, +Lines)
Hook predicate that may be defined in the module user to intercept messages from
print_message/2. Term and Kind are the same as passed to print _message/2. Lines
is a list of format statements as described with print_message_lines/3. See also
message_to_string/2.

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

message_to_string(+Term, -String)
Translates a message-term into a string object (see section 4.23). Primarily intended to write
messages to Windows in XPCE (see section 1.5) or other GUI environments.

4.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section 9.6.12).

Signals are used to handle internal errors (execution of a non-existing CPU instruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital functionality to raise a
signal in another thread for achie